fx-991ZA PLUS II
(NATURAL-V.P.A.M.)
Ngaphambi Kokusebenzisa Umshini Wokubala
Amamodi Wokubala Nokusetha Umshini Wokubala
Ukufaka Izichazi Namanani
- ▶Imithetho Evamile Yokufaka
- ▶Ukufaka Ngesibonisi Semvelo
- ▶√ Kusukela Emahlukweni Wokubala
- ▶Ukusebenzisa Amanani Nezichazi Njengempikiswano (Isibonisi Semvelo kuphela)
- ▶Ukumisela Imodi Yokufaka (Isibonisi Somugqa kuphela)
- ▶Ukulungisa Nokucisha Isichazi
Izibalo Eziyisisekelo
- ▶Ukushintshashintsha Imiphumela Yokubala
- ▶Izibalo Ezingamaqhezu
- ▶Izibalo Zamaphesenti
- ▶Ukubalwa Kwama-Degrees, Imizuzu Nemizuzwana (Sexagesimal)
- ▶Izitatimende Ezixhantile
- ▶Ukusebenzisa Izimpawu Zobunjiniyela
- ▶Izibalo Zokusele
- ▶Ukufekthorayiza Ngezinombolo Ezingahlukaniseki Ngokuphelele
- ▶Umlando Wokubala Nokudlala Futhi
- ▶Ukusebenzisa Amafankshini Enkumbulo
Izibalo Zamafankshini
- ▶I-Pi (π), Isisekeli se-Logarithm Yemvelo e
- ▶Imisebenzi ye-Trigonometric
- ▶Imisebenzi ye-Hyperbolic
- ▶Iyunithi Yokuguqulela i-Engele
- ▶Imisebenzi ye-Exponential
- ▶Imisebenzi ye-Logarithmic
- ▶Imisebenzi ye-Power Nemisebenzi ye-Power Root
- ▶Izibalo Zokuhlanganisa
- ▶Izibalo Zokwahlukanisa
- ▶Σ Izibalo
- ▶Ukuguqulela Izixhumanisi ze-Rectangular-Polar
- ▶Umsebenzi Wefektha (!)
- ▶Umsebenzi Wenani Langempela (Abs)
- ▶Inombolo Ewumjikelezo (Ran#)
- ▶Inombolo Ephelele Ewumjikelezo (RanInt#)
- ▶Izimiseli (nPr) kanye Nenhlanganisela (nCr)
- ▶Umsebenzi we-Rounding (Rnd)
- ▶I-Greatest Common Divisor (GCD) ne-Least Common Multiple (LCM)
- ▶Ukusebenzisa i-CALC
- ▶Ukusebenzisa i-SOLVE
- ▶Okungaguquki Kwesayensi
- ▶Ukuguqulela Kumethriki
Ukusebenzisa Amamodi Okubala
- ▶Izibalo Zezinombolo Eziphicayo (CMPLX)
- ▶Izibalo Zamastathistiki (STAT)
- ▶Izibalo ze-Base-n (BASE-N)
- ▶Ukubala ama-Equation (EQN)
- ▶Izibalo Zemetriksi (MATRIX)
- ▶Ukwenza Ithebula Lezinombolo kusukela Emisebenzini Emibili (TABLE)
- ▶Izibalo ze-Vector (VECTOR)
- ▶Izibalo Zokwaba (DIST)
- ▶Izibalo Zokungalingani (INEQ)
- ▶Izibalo ze-Ratio
Ulwazi Lobuchwepheshe
- ▶Amaphutha
- ▶Ngaphambi Kokuthatha Ngokuthi Isibali Asisebenzi Kahle…
- ▶Ukubuyisela Ibhetri
- ▶Ukulandelana Kokubaluleka Kwesibalo
- ▶Imahluko Yezibalo, Izinombolo Zamadijithi, kanye Nokucacisa
- ▶Imininingwane
- ▶Ukuqinisekisa Ubuqiniso Bomshini Wakho Wokubala
Okuvame Ukubuzwa
Izibalo ze-Vector (VECTOR)
Sebenzisa Imodi ye-VECTOR ukwenza izibalo ze-vector ye-2-dimensional neye-3-dimensional. Ukwenza izibalo ze-vector, kufanele uqale ngokwabela idatha kuzimeleli ezikhethekile (VctA, VctB, VctC), bese usebenzisa izimeleli ezibalweni ezibonisiwe esibonelweni esingezansi.
Isibonelo 1: Ukwabela (1, 2) ku-VctA kanye (3, 4) ku-VctB, bese wenza izibalo ezilandelayo: (1, 2) + (3, 4)
1. Cindezela (VECTOR) ukufaka Imodi ye-VECTOR.
2. Cindezela (VctA)
(2).
Lokhu kuzobonisa i-Vector Editor yokufaka i-vector ye-2-dimensional ye-VctA.
(1) "A" umele "VctA".
3. Faka amalungu e-VctA: 12
.
4. Yenza izenzo ezilandelayo:
(VECTOR)
(Data)
(VctB)
(2).
Lokhu kuzobonisa i-Vector Editor yokufaka i-vector ye-2-dimensional ye-VctB.
5. Faka amalungu e-VctB: 34
.
6. Cindezela ukuthuthukisa isikrini sesibalo, nokwenza isibalo (VctA+VctB):
(VECTOR)
(VctA)
(VECTOR)
(VctB)
.
Lokhu kuzobonisa isikrini se-VctAns esinemiphumela yesibalo.
- (2) "Ans" umele "VctAns".
Phawula: "VctAns" umele "Vector Answer Memory". Bheka ethi "I-Vector Answer Memory" mayelana nokwaziswa okubanzi.
I-Vector Answer Memory
Noma nini lapho imiphumela yesibalo seyikhululiwe Kumodi ye-VECTOR eyi-vector, isikrini se-VctAns sizobonisa imiphumela. Imiphumela izokwabela nakusimeleli esibizwa "VctAns".
Isimeleli se-VctAns singasetshenziswa ezibalweni njengoba kuchaziwe ngezansi.
Ukufaka isimeleli se-VctAns esibalweni, yenza isenzo esilandelayo: (VECTOR)
(VctAns).
Ukucindezela omunye walo khiye kuyilapho isikrini se-VctAns sibonisiwe kuzoshintshela esikrinini sesibalo ngokuzenzakalelayo: ,
,
,
. Isikrini sesibalo sizobonisa isimeleli se-VctAns esilandelwa ngesinye isenzo noma umsebenzi wokhiye ocindezelwe.
Ukwabela Nokuhlela Idatha Yesimeleli se-Vector
Kubalulekile!
Izenzo ezilandelayo azisekelwe yi-Vector Editor: ,
(M-),
(STO). I-Pol, Rec, ÷R, nezitatimende ezikaningi ngeke zifakwe kanye ne-Vector Editor.
Ukwabela idatha entsha kokungaguquguquki kwe-vector:
1. Cindezela (VECTOR)
(Dim), bese, kumenyu evelayo, ukhethe isimeleli se-vector ofuna ukwabela kuso idatha.
2. Kumenyu elandelayo evelayo, khetha ubukhulu (m).
3. Sebenzisa i-Vector Editor evelayo ukufaka izakhi ze-vector.
Isibonelo 2: Ukwabela (2, -1, 2) ku-VctC
(VECTOR)
(Dim)
(VctC)
(3)
21
2
Ukushintsha amalungu okungaguquguqui kwe-vector:
1. Cindezela (VECTOR)
(Data), bese, kumenyu evelayo, khetha isimeleli se-vector ofuna ukusihlela.
2. Sebenzisa i-Vector Editor evelayo ukuhlela izakhi ze-vector.
Hambisa i-cursor kuseli eliqukethe isakhi ofuna ukusishintsha, faka inani elisha, bese ucindezela .
Ukukopisha okuqukethwe kwesimeleli se-vector (noma i-VctAns):
1. Sebenzisa i-Vector Editor ukubonisa i-vector ofuna ukuyikopisha.
Uma ufuna ukukopisha i-VctA, ngokwesibonelo, sebenzisa okhiye abalandelayo: (VECTOR)
(Data)
(VctA).
Uma ufuna ukukopisha okuqukethwe kwe-VctAns, yenza lokhu okuboniswe esikrinini se-VctAns: (VECTOR)
(VctAns)
.
2. Cindezela (STO), bese wenza esinye salezi zenzo zokhiye ukubalula indawo yokukopishela:
(VctA),
(VctB), noma
(VctC).
Lokhu kuzobonisa i-Vector Editor enokuqukethwe kwendawo okukopishelwa kuyo.
Izibonelo Zezibolo ze-Vector
Izibonelo ezilandelayo zisebenzisa i-VctA = (1, 2) ne-VctB = (3, 4) Esibonelweni 1, ne-VctC = (2, -1, 2) Esibonelweni 2.
Isibonelo 3: 3 × VctA (I-Vector scalar multiplication), 3 × VctA - VctB (Isibonelo sesibalo kusetshenziswa i-VctAns)
3
(VECTOR)
(VctA)
(VECTOR)
(VctB)
Isibonelo 4: VctA • VctB (Umphumela wechashazi we-Vector)
(VECTOR)
(VctA)
(VECTOR)
(Dot)
(VECTOR)
(VctB)
Isibonelo 5: VctA × VctB (Umphumela we-Vector cross)
(VECTOR)
(VctA)
(VECTOR)
(VctB)
Isibonelo 6: Thola amanani aphelel e-VctC.
(Abs)
(VECTOR)
(VctC)
Isibonelo 7: Nquma i-engele elenziwe nge-VctA ne-VctB ezinombolweni ezintathu ngemva kwekhoma (Fix 3). (Iyunithi ye-engele: Deg)
(cos𝜃 = (𝐴∙𝐵) |𝐴||𝐵|, eba ngu 𝜃 = cos-1(𝐴∙𝐵) |𝐴||𝐵|)
(SETUP)
(Fix)
(VECTOR)
(VctA)
(VECTOR)
(Dot)
(VECTOR)
(VctB)
(Abs)
(VECTOR)
(VctA)
(Abs)
(VECTOR)
(VctB)
(cos-1)