fx-991ZA PLUS II
(NATURAL-V.P.A.M.)
Ngaphambi Kokusebenzisa Umshini Wokubala
Amamodi Wokubala Nokusetha Umshini Wokubala
Ukufaka Izichazi Namanani
- ▶Imithetho Evamile Yokufaka
- ▶Ukufaka Ngesibonisi Semvelo
- ▶√ Kusukela Emahlukweni Wokubala
- ▶Ukusebenzisa Amanani Nezichazi Njengempikiswano (Isibonisi Semvelo kuphela)
- ▶Ukumisela Imodi Yokufaka (Isibonisi Somugqa kuphela)
- ▶Ukulungisa Nokucisha Isichazi
Izibalo Eziyisisekelo
- ▶Ukushintshashintsha Imiphumela Yokubala
- ▶Izibalo Ezingamaqhezu
- ▶Izibalo Zamaphesenti
- ▶Ukubalwa Kwama-Degrees, Imizuzu Nemizuzwana (Sexagesimal)
- ▶Izitatimende Ezixhantile
- ▶Ukusebenzisa Izimpawu Zobunjiniyela
- ▶Izibalo Zokusele
- ▶Ukufekthorayiza Ngezinombolo Ezingahlukaniseki Ngokuphelele
- ▶Umlando Wokubala Nokudlala Futhi
- ▶Ukusebenzisa Amafankshini Enkumbulo
Izibalo Zamafankshini
- ▶I-Pi (π), Isisekeli se-Logarithm Yemvelo e
- ▶Imisebenzi ye-Trigonometric
- ▶Imisebenzi ye-Hyperbolic
- ▶Iyunithi Yokuguqulela i-Engele
- ▶Imisebenzi ye-Exponential
- ▶Imisebenzi ye-Logarithmic
- ▶Imisebenzi ye-Power Nemisebenzi ye-Power Root
- ▶Izibalo Zokuhlanganisa
- ▶Izibalo Zokwahlukanisa
- ▶Σ Izibalo
- ▶Ukuguqulela Izixhumanisi ze-Rectangular-Polar
- ▶Umsebenzi Wefektha (!)
- ▶Umsebenzi Wenani Langempela (Abs)
- ▶Inombolo Ewumjikelezo (Ran#)
- ▶Inombolo Ephelele Ewumjikelezo (RanInt#)
- ▶Izimiseli (nPr) kanye Nenhlanganisela (nCr)
- ▶Umsebenzi we-Rounding (Rnd)
- ▶I-Greatest Common Divisor (GCD) ne-Least Common Multiple (LCM)
- ▶Ukusebenzisa i-CALC
- ▶Ukusebenzisa i-SOLVE
- ▶Okungaguquki Kwesayensi
- ▶Ukuguqulela Kumethriki
Ukusebenzisa Amamodi Okubala
- ▶Izibalo Zezinombolo Eziphicayo (CMPLX)
- ▶Izibalo Zamastathistiki (STAT)
- ▶Izibalo ze-Base-n (BASE-N)
- ▶Ukubala ama-Equation (EQN)
- ▶Izibalo Zemetriksi (MATRIX)
- ▶Ukwenza Ithebula Lezinombolo kusukela Emisebenzini Emibili (TABLE)
- ▶Izibalo ze-Vector (VECTOR)
- ▶Izibalo Zokwaba (DIST)
- ▶Izibalo Zokungalingani (INEQ)
- ▶Izibalo ze-Ratio
Ulwazi Lobuchwepheshe
- ▶Amaphutha
- ▶Ngaphambi Kokuthatha Ngokuthi Isibali Asisebenzi Kahle…
- ▶Ukubuyisela Ibhetri
- ▶Ukulandelana Kokubaluleka Kwesibalo
- ▶Imahluko Yezibalo, Izinombolo Zamadijithi, kanye Nokucacisa
- ▶Imininingwane
- ▶Ukuqinisekisa Ubuqiniso Bomshini Wakho Wokubala
Okuvame Ukubuzwa
Izibalo Zemetriksi (MATRIX)
Sebenzisa Imodi ye-MATRIX ukwenza izibalo ezihilela ama-matrix afikela emigqeni yamakholomu engu-3. Ukwenza isibalo se-matrix, kudingeka uqale ngokwabela idatha ezimelelini ezikhethekile ze-matrix (MatA, MatB, MatC), bese usebenzisa izimeleli esibalweni njengoba kubonisiwe esibonelweni esingezansi.
Isibonelo 1: Ukwabela i- ku-MatA ne-
ku-MatB, bese wenza izibalo ezilandelayo:
×
(MatA×MatB),
+
(MatA+MatB)
1. Cindezela (MATRIX) ukufaka Imodi ye-MATRIX.
2. Cindezela (MatA)
(2×2).
Lokhu kuzobonisa i-Matrix Editor yokufaka izakhi ze-matrix ka-2 × 2 ozibalulile ye-MatA.
- (1) "A" umele "MatA".
3. Faka izakhi ze-MatA: 21
1
1
.
4. Yenza izenzo ezilandelayo:
(MATRIX)
(Data)
(MatB)
(2×2). Lokhu kuzobonisa i-Matrix Editor yokufaka izakhi ze-matrix ka-2 × 2 oyibalulile ye-MatB.
5. Faka izakhi ze-MatB: 21
1
2
.
6. Cindezela ukuthuthukisa isikrini sesibalo, futhi wenze isibalo sokuqala (MatA×MatB):
(MATRIX)
(MatA)
(MATRIX)
(MatB)
.
Lokhu kuzobonisa isikrini se-MatAns esinemiphumela yesibalo.
(2) "Ans" umele "MatAns".
Phawula: "MatAns" umele "Matrix Answer Memory". Bheka esithi "I-Matrix Answer Memory" mayelana nokwaziswa okubanzi.
7. Yenza isibalo esilandelayo (MatA+MatB):
(MATRIX)
(MatA)
(MATRIX)
(MatB)
.
I-Matrix Answer Memory
Noma nini lapho imiphumela yesibalo ekhululiwe Kumodi ye-MATRIX iyi-matrix, isikrini se-MatAns sizovela nemiphumela. Imiphumela izokwabelwa isimeleli esithi "MatAns".
Isimeleli se-MatAns singasetshenziswa ezibalweni njengoba kuchaziwe ngezansi.
Ukufaka isimeleli se-MatAns esibalweni, sebenzisa okhiye abalandelayo: (MATRIX)
(MatAns).
Ukucindezela noma yimuphi walabokhiye abalandelayo kuyilapho isikrini se-MatAns sibonisiwe kuzoshintsha ngokuzenzakalelayo esikrinini sokubala: ,
,
,
,
,
,
(x3). Isikrini sesibalo sizobonisa isimeleli se-MatAns esilandelwa yisenzo noma umsebenzi wokhiye omcindezele.
Ukwabela Nokuhlela Idatha Yesimeleli se-Matrix
Kubalulekile!
Izenzo ezilandelayo azisekelwe yi-Matrix Editor: ,
(M-),
(STO). I-Pol, Rec, ÷R, nezitatimende ezikaningi ngeke kufakwe kanye ne-Matrix Editor.
Ukwabela idatha entsha kokuguquguqukayo kwe-matrix:
1. Cindezela (MATRIX)
(Dim), bese, kumenyu evelayo, ukhethe isimeleli se-matrix ofuna ukwabela kuso idatha.
2. Kumenyu elandelayo evelayo, khetha ubukhulu (m×n).
3. Khetha i-Metrix Editor evelayo ukufaka izakhi ze-matrix.
Isibonelo 2: Ukwabela i- ku-MatC
(MATRIX)
(Dim)
(MatC)
(2×3)
10
1
0
1
1
Ukushintsha amalungu okuguquguqukayo kwe-matrix:
1. Cindezela (MATRIX)
(Data), bese, kumenyu evelayo, ukhethe isimeleli se-matrix ofuna ukusilungisa.
2. Sebenzisa i-Matrix Editor evelayo ukuhlela izakhi ze-matrix.
Hambisa i-cursor kuseli eliqukethe isakhi ofuna ukusishintsha, faka inani elisha, bese ucindezela .
Ukukopisha okuqukethwe kwesimeleli se-matrix (noma i-MatAns):
1. Sebenzisa i-Matrix Editor ukubonisa i-matrix ofuna ukuyikopisha.
Uma ufuna ukukopisha i-MatA, ngokwesibonelo, sebenzisa okhiye abalandelayo: (MATRIX)
(Data)
(MatA). Uma ufuna ukukopisha okuqukethwe kwe-MatAns, yenza okulandelayo ukubonisa isikrini se-MatAns:
(MATRIX)
(MatAns)
.
2. Cindezela (STO), bese wenza esinye salezi zenzo zokhiye ukubalula indawo yokukopishela:
(MatA),
(MatB), noma
(MatC).
Lokhu kuzobonisa i-Matrix Editor ngokuqukethwe kwendawo yokukopishela.
Izibonelo Zezibalo Zemetriksi
Izibonelo ezilandelayo zisebenzisa i-MatA = ne-MatB =
Esibonelweni 1, ne-MatC =
Esibonelweni 2.
Isibonelo 3: 3 × MatA (i-Matrix Scalar Multiplication).
3
(MATRIX)
(MatA)
Isibonelo 4: Thola isinqumi sika-MatA (det(MatA)).
(MATRIX)
(det)
(MATRIX)
(MatA)
- 1
Isibonelo 5: Thola ukudluliswa kuka-MatC (Trn(MatC)).
(MATRIX)
(Trn)
(MATRIX)
(MatC)
Isibonelo 6: Thola okuphambene kwe-MatA (MatA-1).
Phawula: Ngeke ukwazi ukusebenzisa i- mayelana nalokhu okufakiwe. Sebenzisa lokhiye
ukufaka i-"-1".
(MATRIX)
(MatA)
Isibonelo 7: Thola inani langempela lesakhi ngasinye se-MatB (Abs(MatB)).
(Abs)
(MATRIX)
(MatB)
Isibonelo 8: Nquma i-square ne-cube le-MatA (MatA2, MatA3).
Phawula: Ngeke ukwazi ukusebenzisa i- mayelana nalokhu okufakiwe. Sebenzisa i-
ukubalula i-squaring, kanye ne-
(x3) ukubalula i-cubing.
(MATRIX)
(MatA)
(MATRIX)
(MatA)
(x3)
Isibonelo 9: Nquma i-MatA = ifomu lomugqa we-echelon.
(MATRIX)
(Ref)
(MATRIX)
(MatA)
Isibonelo 10: Nquma i-MatA = ifomu elincishisiwe lomugqa we-echelon.
(MATRIX)
(Rref)
(MATRIX)
(MatA)