fx-991ZA PLUS II
(NATURAL-V.P.A.M.)
Ngaphambi Kokusebenzisa Umshini Wokubala
Amamodi Wokubala Nokusetha Umshini Wokubala
Ukufaka Izichazi Namanani
- ▶Imithetho Evamile Yokufaka
- ▶Ukufaka Ngesibonisi Semvelo
- ▶√ Kusukela Emahlukweni Wokubala
- ▶Ukusebenzisa Amanani Nezichazi Njengempikiswano (Isibonisi Semvelo kuphela)
- ▶Ukumisela Imodi Yokufaka (Isibonisi Somugqa kuphela)
- ▶Ukulungisa Nokucisha Isichazi
Izibalo Eziyisisekelo
- ▶Ukushintshashintsha Imiphumela Yokubala
- ▶Izibalo Ezingamaqhezu
- ▶Izibalo Zamaphesenti
- ▶Ukubalwa Kwama-Degrees, Imizuzu Nemizuzwana (Sexagesimal)
- ▶Izitatimende Ezixhantile
- ▶Ukusebenzisa Izimpawu Zobunjiniyela
- ▶Izibalo Zokusele
- ▶Ukufekthorayiza Ngezinombolo Ezingahlukaniseki Ngokuphelele
- ▶Umlando Wokubala Nokudlala Futhi
- ▶Ukusebenzisa Amafankshini Enkumbulo
Izibalo Zamafankshini
- ▶I-Pi (π), Isisekeli se-Logarithm Yemvelo e
- ▶Imisebenzi ye-Trigonometric
- ▶Imisebenzi ye-Hyperbolic
- ▶Iyunithi Yokuguqulela i-Engele
- ▶Imisebenzi ye-Exponential
- ▶Imisebenzi ye-Logarithmic
- ▶Imisebenzi ye-Power Nemisebenzi ye-Power Root
- ▶Izibalo Zokuhlanganisa
- ▶Izibalo Zokwahlukanisa
- ▶Σ Izibalo
- ▶Ukuguqulela Izixhumanisi ze-Rectangular-Polar
- ▶Umsebenzi Wefektha (!)
- ▶Umsebenzi Wenani Langempela (Abs)
- ▶Inombolo Ewumjikelezo (Ran#)
- ▶Inombolo Ephelele Ewumjikelezo (RanInt#)
- ▶Izimiseli (nPr) kanye Nenhlanganisela (nCr)
- ▶Umsebenzi we-Rounding (Rnd)
- ▶I-Greatest Common Divisor (GCD) ne-Least Common Multiple (LCM)
- ▶Ukusebenzisa i-CALC
- ▶Ukusebenzisa i-SOLVE
- ▶Okungaguquki Kwesayensi
- ▶Ukuguqulela Kumethriki
Ukusebenzisa Amamodi Okubala
- ▶Izibalo Zezinombolo Eziphicayo (CMPLX)
- ▶Izibalo Zamastathistiki (STAT)
- ▶Izibalo ze-Base-n (BASE-N)
- ▶Ukubala ama-Equation (EQN)
- ▶Izibalo Zemetriksi (MATRIX)
- ▶Ukwenza Ithebula Lezinombolo kusukela Emisebenzini Emibili (TABLE)
- ▶Izibalo ze-Vector (VECTOR)
- ▶Izibalo Zokwaba (DIST)
- ▶Izibalo Zokungalingani (INEQ)
- ▶Izibalo ze-Ratio
Ulwazi Lobuchwepheshe
- ▶Amaphutha
- ▶Ngaphambi Kokuthatha Ngokuthi Isibali Asisebenzi Kahle…
- ▶Ukubuyisela Ibhetri
- ▶Ukulandelana Kokubaluleka Kwesibalo
- ▶Imahluko Yezibalo, Izinombolo Zamadijithi, kanye Nokucacisa
- ▶Imininingwane
- ▶Ukuqinisekisa Ubuqiniso Bomshini Wakho Wokubala
Okuvame Ukubuzwa
Izibalo Zokungalingani (INEQ)
Ungasebenzisa inqubo elandelayo ukuxazulula ukungalingani oku-quadratic noma oku-cubic.
1. Cindezela 

(INEQ) ukufaka Imodi ye-INEQ.
2. Kumenyu evelayo, khetha uhlobo lokungalingani.
| Ukukhetha uhlobo lokungalingani: | Cindezela lo khiye: |
|---|---|
| Ukungalingani kwe-quadratic | (aX2 + bX + c) |
| Ukungalingani kwe-cubic | (aX3 + bX2 + cX + d) |
3. Kumenyu evelayo, sebenzisa lo khiye
ukuya kulo
ukukhetha uhlobo lophawu lokungalingani ne-oriantation.
4. Sebenzisa i-kuKho-efishiyenti Editha evelayo ukufaka izimeleli ze-coefficient.
Ukuxazulula u-x2 + 2x - 3 < 0, ngokwesibonelo, faka ama-coefficient ka-a = 1, b = 2, c = -3 ngokucindezela u-1
2
3
.
Ukuze ushintshe inani elifanelekile osunakho ukufaka, hambisa isikhombisi kuseli elifanele, ufake inani elisha, bese ucindezela u-
.
Ukucindezela u-
kuzosula wonke ama-coefficients abe yi-zero.
Phawula: Imisebenzi elandelayo ayisekelwa yiKho-efishiyenti Editha:
, 
(M-), 
(STO). I-Pol, i-Rec, ÷ R, kanye nezitatimende ezixubile nazo azikwazi ukufakwa kuKho-efishiyenti Editha.
5. Ngemuva kokuthi onke amanani ayindlela ofuna ngayo, cindezela u-
.
Lokhu kuzobonisa izisombululo.
Ukuze uphindele ku-kuKho-efishiyenti Editha kuyilapho izisombululo ziboniswe esikrinini, cindezela
.
Phawula
Amanani ngeke aguqulelwe ku-engineering notation esikrinini sesisombululo.
Ukushintsha Uhlobo Lokungalingani
Cindezela 

(INEQ) bese ukhetha uhlobo lokungalingani kumenyu evelayo. Ukushintsha uhlobo lokungalingani kubangela amanani wawo wonke ama-coefficient we-kuKho-efishiyenti Editha ukushintshela eqandeni.
Izibonelo Zesibalo Semodi ye-INEQ
Isibonelo 1: x2 + 2x - 3 < 0 (MthIO-MathO)


(INEQ)
(aX2 + bX + c)
(aX2 + bX + c < 0)
- 1
2
3

Isibonelo 2: x2 + 2x - 3 ≧ 0 (MthIO-MathO)


(INEQ)
(aX2 + bX + c)
(aX2 + bX + c ≧ 0)
1
2
3

- Phawula: Izisombululo ezibonisiwe njengoba kuveziwe lapha uma Isibonisi Somugqa sikhethiwe

Isibonelo 3: 2x3 - 3x2 ≧ 0 (MthIO-MathO)


(INEQ)
(aX3 + bX2 + cX + d)
(aX3 + bX2 + cX + d ≧ 0)
2
3

Isibonelo 4: 3x3 + 3x2 - x > 0 (MthIO-MathO)


(INEQ)
(aX3 + bX2 + cX + d)
(aX3 + bX2 + cX + d > 0)
3
3
1

- Phawula: Izisombululo ezibonisiwe njengoba kuveziwe lapha uma Isibonisi Somugqa sikhethiwe.

Isibonisi Sesisombululo Esikhethekile
Ethi "All Real Numbers" ivela esikrinini uma kunesisombululo sokungalingani kwazo zonke izinombolo.
Isibonelo: x2 ≧ 0 (MthIO-MathO)


(INEQ)
(aX2 + bX + c)
(aX2 + bX + c ≧ 0)
1
0
0


Ethi "No-Solution" ivela esikrinini sesisombululo uma kungekho sisombululo esiphumayo kokungalingani (njengo-X2 < 0).









