Izibalo Zokwaba (DIST)
Ungasebenzisa izinqubo ngezansi ukwenza iinhlobo eziyisikhombisa ezihlukahlukene zezibalo zokusabalalisa.
1. Cindezela 

(DIST) ukufaka Imodi ye-DIST.
2. Kumenyu evelayo, khetha uhlobo lwesibalo sokusabalalisa.
| Ukukhetha lolu hlobo lwesibalo: | Cindezela lo khiye: |
|---|---|
| I-Norrmal probability density | (Normal PD) |
| I-Normal cumulative distribution | (Normal CD) |
| I-Inverse normal cumulative distribution | (Inverse Normal) |
| I-Binomial probability | (Binomial PD) |
| I-Binomial cumulative distribution | ![]() (Binomial CD) |
| I-Poisson probability | ![]() (Poisson PD) |
| I-Poisson cumulative distribution | ![]() (Poisson CD) |
3. Ukufaka amanani wezimeleli.
Nge-Binomial PD, Binomial CD, Poisson PD, ne-Poisson CD, ungafaka isampula ledatha bese wenza izibalo.
4. Emuva kokufaka amanani wazo zonke izimeleli, cindezela
.
Lokhu kuveza imiphumela yesibalo.
Ukucindezela i-
noma i-
kuyilapho imiphumela ibonisiwe kuzobuyisela okufakiwe esikrinini sesimeleli sokuqala.
Phawula
Ukushintsha uhlobo lwesibalo sokusabalalisa emva kokufaka Imodi ye-DIST, cindezela 
(STAT/DIST)
(Type) bese ukhetha uhlobo lwesisabalalisi osifunayo.
Ukunemba kwesibalo sokusabalalisa kufinyelela kumadijithi amahlanu aphawulekayo.
Izimeleli Ezamukela Okufakwayo
Izimeleli ezilandelayo zesibalo sokusabalalisi ezamukela ukufakwa kwamanani.
I-Normal PD ........................... x, σ, μ
I-Normal CD ........................... I-Lower , I-Upper, σ, μ
I-Inverse Normal .................... I-Area, σ, μ (Isethingi le-Tail njalo ngakwesokudla.)
I-Binomial PD, I-Binomial CD ... x (noma List), N, p
I-Poisson PD, I-Poisson CD ..... x (noma List), μ
x: data
σ: i-standard deviation (σ < 0)
μ: i-mean
I-Lower: i-lower boundary
I-Upper: i-upper boundary
I-Tail: inani lamathuba e-tail.
I-Area: inani lamathuba (0 ≦ Area ≦ 1)
I-List: i-list yesampula yedatha
N: inani lemizamo
p: impumelelo yethuba (0 ≦ p ≦ 1)
I-List Lwesikrini (Binomial PD, Binomial CD, Poisson PD, Poisson CD)
Nge-Binomial PD, Binomial CD, Poisson PD, ne-Poisson CD, sebenzisa Isikrini se-List sesampula yedatha yokufakwayo. Ungafaka amasampula edatha angafika ku-25 ngokuguquguqukayo ngakunye. Imiphumela yokubala ibonisiwe Esikrinini se-List.
(1) Uhlobo lwesibalo sokusabalalisa
(2) Inani elisendaweni yamanje ye-cursor
(3) X: Isampula yedatha
(4) Ans: Imiphumela yesibalo
Ukuhlela isampula yedatha:
Hambisa i-cursor kuseli eliqukethe idatha ofuna ukuyihlela, ufake idatha entsha, bese ucindezela
.
Ukususa yonke idatha:
Hambisa i-cursor iye kusampula yedatha ofuna ukuyisusa bese ucindezela
.
Ukufaka isampula yedatha:
Hambisa i-cursor endaweni lapho ofuna ukuufaka khona isampula yedatha, cindezela 
(STAT/DIST)
(Edit)
(Ins), bese ufaka isampula yedatha.
Ukususa yonke isampula yedatha:
Cindezela 
(STAT/DIST)
(Edit)
(Del-A).
Izibonelo Zesibalo Semodi ye-DIST
Isibonelo 1: Ukubala amathuba okuminyana okujwayelekile okungenzeka uma u-x = 36, σ = 2, μ = 35


(DIST)
(Normal PD)
- 36


- 2


- 35


Imiphumela: 0,1760326634
Ukucindezela i-
noma i-
kuphindela esikrinini sokufaka u-x.
Isibonelo 2: Ukubala amathuba e-binomial yesampula yedatha {10; 11; 12; 13; 14} uma u-N = 15 no-p = 0,6


(DIST)
(Binomial PD)
- Bonisa Isikrini se-List:
(List) 
Ukubalula idatha usebenzisa ifomethi yepharamitha, cindezela
(Var).
- 10
11
12
13
14

- 15


- 0
6

Imiphumela:x = amathuba we-binomial ka-10 ≒ 0,18594
x = amathuba we-binomial ka-11 ≒ 0,12678
x = amathuba we-binomial ka-12 ≒ 0,063388
x = amathuba we-binomial ka-13 ≒ 0,021942
x = amathuba we-binomial ka-14 ≒ 4,7018 × 10-3
Ukucindezela i-
kuphindela esikrinini sokufaka i-N. Ukucindezela i-
kuphindela Esikrini se-List (ukufaka amasampula edatha elondiwe).
Phawula
Okulandelayo ngeke kusetshenziswe ekusabalaliseni izibalo: Pol, Rec, ÷R, ∫, d/dx.
Uma idatha ibaluliwe kusetshenziswa ifomethi yepharamitha, bala imiphumela elondwe enkumbulweni ye-Ans.
Umyalezo wephutha uyavela uma inani elifakiwe lingaphandle komahluko ovumelekile. Okuthi "ERROR" kuzovela kukholomu le-Ans Esikrinini se-List uma inani elifakiwe lesampula yedatha ehambisanayo lingaphandle komahluko ovumelekile.
(Inverse Normal)



