fx-991ZA PLUS II
(NATURAL-V.P.A.M.)
Ngaphambi Kokusebenzisa Umshini Wokubala
Amamodi Wokubala Nokusetha Umshini Wokubala
Ukufaka Izichazi Namanani
- ▶Imithetho Evamile Yokufaka
- ▶Ukufaka Ngesibonisi Semvelo
- ▶√ Kusukela Emahlukweni Wokubala
- ▶Ukusebenzisa Amanani Nezichazi Njengempikiswano (Isibonisi Semvelo kuphela)
- ▶Ukumisela Imodi Yokufaka (Isibonisi Somugqa kuphela)
- ▶Ukulungisa Nokucisha Isichazi
Izibalo Eziyisisekelo
- ▶Ukushintshashintsha Imiphumela Yokubala
- ▶Izibalo Ezingamaqhezu
- ▶Izibalo Zamaphesenti
- ▶Ukubalwa Kwama-Degrees, Imizuzu Nemizuzwana (Sexagesimal)
- ▶Izitatimende Ezixhantile
- ▶Ukusebenzisa Izimpawu Zobunjiniyela
- ▶Izibalo Zokusele
- ▶Ukufekthorayiza Ngezinombolo Ezingahlukaniseki Ngokuphelele
- ▶Umlando Wokubala Nokudlala Futhi
- ▶Ukusebenzisa Amafankshini Enkumbulo
Izibalo Zamafankshini
- ▶I-Pi (π), Isisekeli se-Logarithm Yemvelo e
- ▶Imisebenzi ye-Trigonometric
- ▶Imisebenzi ye-Hyperbolic
- ▶Iyunithi Yokuguqulela i-Engele
- ▶Imisebenzi ye-Exponential
- ▶Imisebenzi ye-Logarithmic
- ▶Imisebenzi ye-Power Nemisebenzi ye-Power Root
- ▶Izibalo Zokuhlanganisa
- ▶Izibalo Zokwahlukanisa
- ▶Σ Izibalo
- ▶Ukuguqulela Izixhumanisi ze-Rectangular-Polar
- ▶Umsebenzi Wefektha (!)
- ▶Umsebenzi Wenani Langempela (Abs)
- ▶Inombolo Ewumjikelezo (Ran#)
- ▶Inombolo Ephelele Ewumjikelezo (RanInt#)
- ▶Izimiseli (nPr) kanye Nenhlanganisela (nCr)
- ▶Umsebenzi we-Rounding (Rnd)
- ▶I-Greatest Common Divisor (GCD) ne-Least Common Multiple (LCM)
- ▶Ukusebenzisa i-CALC
- ▶Ukusebenzisa i-SOLVE
- ▶Okungaguquki Kwesayensi
- ▶Ukuguqulela Kumethriki
Ukusebenzisa Amamodi Okubala
- ▶Izibalo Zezinombolo Eziphicayo (CMPLX)
- ▶Izibalo Zamastathistiki (STAT)
- ▶Izibalo ze-Base-n (BASE-N)
- ▶Ukubala ama-Equation (EQN)
- ▶Izibalo Zemetriksi (MATRIX)
- ▶Ukwenza Ithebula Lezinombolo kusukela Emisebenzini Emibili (TABLE)
- ▶Izibalo ze-Vector (VECTOR)
- ▶Izibalo Zokwaba (DIST)
- ▶Izibalo Zokungalingani (INEQ)
- ▶Izibalo ze-Ratio
Ulwazi Lobuchwepheshe
- ▶Amaphutha
- ▶Ngaphambi Kokuthatha Ngokuthi Isibali Asisebenzi Kahle…
- ▶Ukubuyisela Ibhetri
- ▶Ukulandelana Kokubaluleka Kwesibalo
- ▶Imahluko Yezibalo, Izinombolo Zamadijithi, kanye Nokucacisa
- ▶Imininingwane
- ▶Ukuqinisekisa Ubuqiniso Bomshini Wakho Wokubala
Okuvame Ukubuzwa
Izibalo Zezinombolo Eziphicayo (CMPLX)
Ukwenza izibalo zezinombolo eziyinkimbinkimbi, qala ngokucindezela (CMPLX) ukuze ufake Imodi ye-CMPLX.
Ungasebenzisa noma yizixhumanisi zesikwele eside (a+bi) noma izixhumanisi ze-polar (r∠θ) ukufaka izinombolo eziyinkimbinkimbi.
Imiphumela yezibalo zezinombolo eziyinkimbinkimbi iboniswe ngokuvumelana nefomethi yesethingi lenani eliyinkimbinkimbi kumenyu yokusetha.
Isibonelo 1: (2 + 6i) ÷ (2i) = 3 - i (Ifomethi yenombolo eyinkimbinkimbi: a+bi)
2
6
(i)
2
(i)
- 3-i
Isibonelo 2: 2∠45 = √2 + √2i (MthIO-MathO) (Iyunithi ye-engele: Deg)
(Ifomethi yenombolo eyinkimbinkimbi: a+bi)
- 2
(∠) 45
- √2+√2i
Isibonelo 3: √2 + √2i = 2∠45 (MthIO-MathO) (Iyunithi ye-engele: Deg)
(Ifomethi yenombolo eyinkimbinkimbi: r∠θ)
2
2
(i)
- 2∠45
Phawula
Uma uhlela ukwenza okufakwayo kanye nokuboniswa kwemiphumela yesibalo ngokwefomethi yezixhumanisi ze-polar, balula iyunithi ye-engele ngaphambi kokuqalisa isibalo.
Inani lika-θ emphumeleni wesibalo libonisiwe mahlukweni walokhu, -180° < θ ≦ 180°.
Ukubonisa imiphumela yesibalo kuyilapho Isibonisi Somugqa sikhethiwe kuzobonisa i-a ne-bi (noma r ne-θ) emigqeni ehlukene.
Izibonelo Zesibalo se-CMPLX Mode
Isibonelo 1: (1 - i)-1 = 12 + 12i (MthIO-MathO) (Ifomethi yenombolo eyinkimbinkimbi: a+bi)
1
(i)
- 12+12i
Isibonelo 2: (1 + i)2 + (1 - i)2 = 0 (MthIO-MathO)
1
(i)
1
(i)
- 0
Isibonelo 3: Ukuze uthole i-conjugate yenombolo eyinkimbinkimbi ka-2 + 3i
(Ifomethi yenombolo eyinkimbinkimbi: a+bi)
(CMPLX)
(Conjg) 2
3
(i)
- 2-3i
Isibonelo 4: Ukuze uthole inani langempela lempikiswano ka-1 + i (MthIO-MathO) (Iyunithi ye-engele: Deg)
Inani Langempela (Abs):
(Abs) 1
(i)
- √2
Impikiswano (arg):
(CMPLX)
(arg) 1
(i)
- 45
Ukusebenzisa Isiqondisi Sefomethi Yokubalula Imiphumela Yesibalo
Esinye salezi ziqondisi ezimbili ezikhethekile (r∠θ noma
a+bi) singafakwa ekugcineni kwesibalo ukubalula ifomethi yesibonisi semiphumela yesibalo.
Isiqondisi simisela phezu kwefomethi yesethingi lenombolo eyinkimbinkimbi yomshini wokubala.
Isibonelo: √2 + √2i = 2∠45, 2∠45 = √2 + √2i (MthIO-MathO) (Iyunithi ye-engele: Deg)
2
2
(i)
(CMPLX)
(
r∠θ)
- 2∠45
- 2
(∠) 45
(CMPLX)
(
a+bi)
- √2+√2i