Izibalo Zezinombolo Eziphicayo (CMPLX)
Ukwenza izibalo zezinombolo eziyinkimbinkimbi, qala ngokucindezela 
(CMPLX) ukuze ufake Imodi ye-CMPLX.
Ungasebenzisa noma yizixhumanisi zesikwele eside (a+bi) noma izixhumanisi ze-polar (r∠θ) ukufaka izinombolo eziyinkimbinkimbi.
Imiphumela yezibalo zezinombolo eziyinkimbinkimbi iboniswe ngokuvumelana nefomethi yesethingi lenani eliyinkimbinkimbi kumenyu yokusetha.
Isibonelo 1: (2 + 6i) ÷ (2i) = 3 - i (Ifomethi yenombolo eyinkimbinkimbi: a+bi)
2
6
(i)

2
(i)

- 3-i
Isibonelo 2: 2∠45 = √2 + √2i (MthIO-MathO) (Iyunithi ye-engele: Deg)
(Ifomethi yenombolo eyinkimbinkimbi: a+bi)
- 2

(∠) 45
- √2+√2i
Isibonelo 3: √2 + √2i = 2∠45 (MthIO-MathO) (Iyunithi ye-engele: Deg)
(Ifomethi yenombolo eyinkimbinkimbi: r∠θ)
2

2
(i)
- 2∠45
Phawula
Uma uhlela ukwenza okufakwayo kanye nokuboniswa kwemiphumela yesibalo ngokwefomethi yezixhumanisi ze-polar, balula iyunithi ye-engele ngaphambi kokuqalisa isibalo.
Inani lika-θ emphumeleni wesibalo libonisiwe mahlukweni walokhu, -180° < θ ≦ 180°.
Ukubonisa imiphumela yesibalo kuyilapho Isibonisi Somugqa sikhethiwe kuzobonisa i-a ne-bi (noma r ne-θ) emigqeni ehlukene.
Izibonelo Zesibalo se-CMPLX Mode
Isibonelo 1: (1 - i)-1 = 12 + 12i (MthIO-MathO) (Ifomethi yenombolo eyinkimbinkimbi: a+bi)
1
(i)


- 12+12i
Isibonelo 2: (1 + i)2 + (1 - i)2 = 0 (MthIO-MathO)
1
(i)


1
(i)


- 0
Isibonelo 3: Ukuze uthole i-conjugate yenombolo eyinkimbinkimbi ka-2 + 3i
(Ifomethi yenombolo eyinkimbinkimbi: a+bi)

(CMPLX)
(Conjg) 2
3
(i)

- 2-3i
Isibonelo 4: Ukuze uthole inani langempela lempikiswano ka-1 + i (MthIO-MathO) (Iyunithi ye-engele: Deg)
Inani Langempela (Abs):

(Abs) 1
(i)
- √2
Impikiswano (arg):

(CMPLX)
(arg) 1
(i)

- 45
Ukusebenzisa Isiqondisi Sefomethi Yokubalula Imiphumela Yesibalo
Esinye salezi ziqondisi ezimbili ezikhethekile (
r∠θ noma
a+bi) singafakwa ekugcineni kwesibalo ukubalula ifomethi yesibonisi semiphumela yesibalo.
Isiqondisi simisela phezu kwefomethi yesethingi lenombolo eyinkimbinkimbi yomshini wokubala.
Isibonelo: √2 + √2i = 2∠45, 2∠45 = √2 + √2i (MthIO-MathO) (Iyunithi ye-engele: Deg)
2

2
(i)
(CMPLX)
(
r∠θ)
- 2∠45
- 2

(∠) 45
(CMPLX)
(
a+bi)
- √2+√2i


