Yeqela kokuqukethwe

CASIO

Isiqondiso kumsebenzisi

Thola

Izibalo Zezinombolo Eziphicayo (CMPLX)

Ukwenza izibalo zezinombolo eziyinkimbinkimbi, qala ngokucindezela (CMPLX) ukuze ufake Imodi ye-CMPLX.

Ungasebenzisa noma yizixhumanisi zesikwele eside (a+bi) noma izixhumanisi ze-polar (rθ) ukufaka izinombolo eziyinkimbinkimbi.
Imiphumela yezibalo zezinombolo eziyinkimbinkimbi iboniswe ngokuvumelana nefomethi yesethingi lenani eliyinkimbinkimbi kumenyu yokusetha.


Isibonelo 1: (2 + 6i) ÷ (2i) = 3 - i  (Ifomethi yenombolo eyinkimbinkimbi: a+bi)

  • 26(i)2(i)
  • 3-i

Isibonelo 2: 2∠45 = √2 + √2i  (MthIO-MathO) (Iyunithi ye-engele: Deg)

(Ifomethi yenombolo eyinkimbinkimbi: a+bi)

  • 2(∠) 45
  • 2+√2i

Isibonelo 3:2 + √2i = 2∠45  (MthIO-MathO) (Iyunithi ye-engele: Deg)

(Ifomethi yenombolo eyinkimbinkimbi: rθ)

  • 22(i)
  • 2∠45

Phawula

Uma uhlela ukwenza okufakwayo kanye nokuboniswa kwemiphumela yesibalo ngokwefomethi yezixhumanisi ze-polar, balula iyunithi ye-engele ngaphambi kokuqalisa isibalo.

Inani lika-θ emphumeleni wesibalo libonisiwe mahlukweni walokhu, -180° < θ ≦ 180°.

Ukubonisa imiphumela yesibalo kuyilapho Isibonisi Somugqa sikhethiwe kuzobonisa i-a ne-bi (noma r ne-θ) emigqeni ehlukene.

Izibonelo Zesibalo se-CMPLX Mode

Isibonelo 1: (1 - i)-1 = 12 + 12i  (MthIO-MathO) (Ifomethi yenombolo eyinkimbinkimbi: a+bi)

  • 1(i)
  • 12+12i

Isibonelo 2: (1 + i)2 + (1 - i)2 = 0  (MthIO-MathO)

  • 1(i)1(i)
  • 0

Isibonelo 3: Ukuze uthole i-conjugate yenombolo eyinkimbinkimbi ka-2 + 3i

(Ifomethi yenombolo eyinkimbinkimbi: a+bi)

  • (CMPLX)(Conjg) 23(i)
  • 2-3i

Isibonelo 4: Ukuze uthole inani langempela lempikiswano ka-1 + i  (MthIO-MathO) (Iyunithi ye-engele: Deg)

Inani Langempela (Abs):

  • (Abs) 1(i)
  • 2

Impikiswano (arg):

  • (CMPLX)(arg) 1(i)
  • 45

Ukusebenzisa Isiqondisi Sefomethi Yokubalula Imiphumela Yesibalo

Esinye salezi ziqondisi ezimbili ezikhethekile (rθ noma a+bi) singafakwa ekugcineni kwesibalo ukubalula ifomethi yesibonisi semiphumela yesibalo.
Isiqondisi simisela phezu kwefomethi yesethingi lenombolo eyinkimbinkimbi yomshini wokubala.


Isibonelo:2 + √2i = 2∠45, 2∠45 = √2 + √2i  (MthIO-MathO) (Iyunithi ye-engele: Deg)

  • 22(i)(CMPLX)(rθ)
  • 2∠45
  • 2(∠) 45(CMPLX)(a+bi)
  • 2+√2i
phrinta leli khasi
Phezulu kwekhasi