Imahluko Yezibalo, Izinombolo Zamadijithi, kanye Nokucacisa
Ukwahluka kwesibalo, inani lamadijithi asetshenzisiwe esibalweni esingaphakathi, kanye nesibalo esinembile kuzoya ngohlobo lwesibalo osenzayo.
Umkhawulo Nokunemba Kokubala
| Umkhawulo Wokubala | ±1 × 10-99 kuya ±9,999999999 × 1099 noma 0 |
| Inani Lemivo Ekubaleni Kwangaphakathi | Imivo engu-15 |
| Ukunemba | Ngokuvamile, ±1 emuvweni we-10 ekubaleni okukodwa. Ukunemba embukisweni ongumphindwa kungu ±1 emuvweni obaluleke kancane kunayo yonke. Amaphutha ayanqwabelana ezibalweni ezilandelanayo. |
Ukubala Amafankshini Imikhawulo Yokufakwayo Nokunemba
| Amafankshini | Umkhawulo Wokufakwayo | |
|---|---|---|
| sinx cosx |
Deg | 0 ≦ |x| < 9 × 109 |
| Rad | 0 ≦ |x| < 157079632,7 | |
| Gra | 0 ≦ |x| < 1 × 1010 | |
| tanx | Deg | Kuyafana no-sinx, ngaphandle uma u-|x| = (2n-1) × 90. |
| Rad | Kuyafana no-sinx, ngaphandle uma u-|x| = (2n-1) × π/2. | |
| Gra | Kuyafana no-sinx, ngaphandle uma u-|x| = (2n-1) × 100. | |
| sin-1x, cos-1x | 0 ≦ |x| ≦ 1 | |
| tan-1x | 0 ≦ |x| ≦ 9,999999999 × 1099 | |
| sinhx, coshx | 0 ≦ |x| ≦ 230,2585092 | |
| sinh-1x | 0 ≦ |x| ≦ 4,999999999 × 1099 | |
| cosh-1x | 1 ≦ x ≦ 4,999999999 × 1099 | |
| tanhx | 0 ≦ |x| ≦ 9,999999999 × 1099 | |
| tanh-1x | 0 ≦ |x| ≦ 9,999999999 × 10-1 | |
| logx, lnx | 0 < x ≦ 9,999999999 × 1099 | |
| 10x | -9,999999999 × 1099 ≦ x ≦ 99,99999999 | |
| ex | -9,999999999 × 1099 ≦ x ≦ 230,2585092 | |
| √x | 0 ≦ x < 1 × 10100 | |
| x2 | |x| < 1 × 1050 | |
| x-1 | |x| < 1 × 10100; x ≠ 0 | |
| 3√x | |x| < 1 × 10100 | |
| x! | 0 ≦ x ≦ 69 (x yinombolo ephelele) | |
| nPr | 0 ≦ n < 1 × 1010, 0 ≦ r ≦ n (n, r bayizinombolo eziphelele) 1 ≦ {n!/(n-r)!} < 1 × 10100 |
|
| nCr | 0 ≦ n < 1 × 1010, 0 ≦ r ≦ n (n, r bayizinombolo eziphelele) 1 ≦ n!/r! < 1 × 10100 noma 1 ≦ n!/(n-r)! < 1 × 10100 |
|
| Pol(x; y) | |x|, |y| ≦ 9,999999999 × 1099 √x2 + y2 ≦ 9,999999999 × 1099 |
|
| Rec(r; θ) | 0 ≦ r ≦ 9,999999999 × 1099 θ: Kuyafana no-sinx |
|
| °’ ” | a°b’c”: |a|, b, c < 1 × 10100; 0 ≦ b, c Inani lemizuzwana linephutha elingu ±1 endaweni yesibili yedesimali. |
|
| °’ ”← | |x| < 1 × 10100 |
|
| xy | x > 0: -1 × 10100 < ylogx < 100 |
|
| x√y | y > 0: x ≠ 0, -1 × 10100 < 1/x logy < 100 |
|
| a b/c | Isamba senombolo ephelele, inombolo engenhla eqhezwini, nenombolo engezansi eqhezwini kumelwe sibe imivo engu-10 noma ngaphansi (sekuhlangene nophawu lokuhlukanisa). | |
| RanInt#(a; b) | a < b; |a|, |b| < 1 × 1010; b - a < 1 × 1010 | |
| GCD(a; b) | |a|, |b| < 1 × 1010 (a, b bayizinombolo eziphelele) | |
| LCM(a; b) | 0 ≦ a, b < 1 × 1010 (a, b bayizinombolo eziphelele) | |
Ukunemba kuyafana nalokho okuchazwe ngaphansi kwesithi "Umkhawulo Nokunemba Kokubala", ngenhla.
xy, x√y, 3√ , x!, nPr, nCr idinga ukubala kwangaphakathi okulandelanayo, okungenza ukuthi amaphutha enzeka esibalweni ngasinye anqwabelane.
Iphutha liyanqwabelana bese liba into enkulu endaweni lapho kwenzeka khona i-inflekshini.
Umkhawulo wemiphumela yokubala ongavezwa ngesimo sika π uma usebenzisa Isimo Sobuso Semvelo ungu-|x| < 106. Nokho, phawula ukuthi iphutha lokubala elenzeka ngaphakathi lingenza ingaveli eminye imiphumela ngesimo sika-π. Lingabangela nokuba imiphumela yokubala obekufanele ivele ngesimo sedesimali, ivele ngesimo se-π.

