fx-991ZA PLUS II
(NATURAL-V.P.A.M.)
Ngaphambi Kokusebenzisa Umshini Wokubala
Amamodi Wokubala Nokusetha Umshini Wokubala
Ukufaka Izichazi Namanani
- ▶Imithetho Evamile Yokufaka
- ▶Ukufaka Ngesibonisi Semvelo
- ▶√ Kusukela Emahlukweni Wokubala
- ▶Ukusebenzisa Amanani Nezichazi Njengempikiswano (Isibonisi Semvelo kuphela)
- ▶Ukumisela Imodi Yokufaka (Isibonisi Somugqa kuphela)
- ▶Ukulungisa Nokucisha Isichazi
Izibalo Eziyisisekelo
- ▶Ukushintshashintsha Imiphumela Yokubala
- ▶Izibalo Ezingamaqhezu
- ▶Izibalo Zamaphesenti
- ▶Ukubalwa Kwama-Degrees, Imizuzu Nemizuzwana (Sexagesimal)
- ▶Izitatimende Ezixhantile
- ▶Ukusebenzisa Izimpawu Zobunjiniyela
- ▶Izibalo Zokusele
- ▶Ukufekthorayiza Ngezinombolo Ezingahlukaniseki Ngokuphelele
- ▶Umlando Wokubala Nokudlala Futhi
- ▶Ukusebenzisa Amafankshini Enkumbulo
Izibalo Zamafankshini
- ▶I-Pi (π), Isisekeli se-Logarithm Yemvelo e
- ▶Imisebenzi ye-Trigonometric
- ▶Imisebenzi ye-Hyperbolic
- ▶Iyunithi Yokuguqulela i-Engele
- ▶Imisebenzi ye-Exponential
- ▶Imisebenzi ye-Logarithmic
- ▶Imisebenzi ye-Power Nemisebenzi ye-Power Root
- ▶Izibalo Zokuhlanganisa
- ▶Izibalo Zokwahlukanisa
- ▶Σ Izibalo
- ▶Ukuguqulela Izixhumanisi ze-Rectangular-Polar
- ▶Umsebenzi Wefektha (!)
- ▶Umsebenzi Wenani Langempela (Abs)
- ▶Inombolo Ewumjikelezo (Ran#)
- ▶Inombolo Ephelele Ewumjikelezo (RanInt#)
- ▶Izimiseli (nPr) kanye Nenhlanganisela (nCr)
- ▶Umsebenzi we-Rounding (Rnd)
- ▶I-Greatest Common Divisor (GCD) ne-Least Common Multiple (LCM)
- ▶Ukusebenzisa i-CALC
- ▶Ukusebenzisa i-SOLVE
- ▶Okungaguquki Kwesayensi
- ▶Ukuguqulela Kumethriki
Ukusebenzisa Amamodi Okubala
- ▶Izibalo Zezinombolo Eziphicayo (CMPLX)
- ▶Izibalo Zamastathistiki (STAT)
- ▶Izibalo ze-Base-n (BASE-N)
- ▶Ukubala ama-Equation (EQN)
- ▶Izibalo Zemetriksi (MATRIX)
- ▶Ukwenza Ithebula Lezinombolo kusukela Emisebenzini Emibili (TABLE)
- ▶Izibalo ze-Vector (VECTOR)
- ▶Izibalo Zokwaba (DIST)
- ▶Izibalo Zokungalingani (INEQ)
- ▶Izibalo ze-Ratio
Ulwazi Lobuchwepheshe
- ▶Amaphutha
- ▶Ngaphambi Kokuthatha Ngokuthi Isibali Asisebenzi Kahle…
- ▶Ukubuyisela Ibhetri
- ▶Ukulandelana Kokubaluleka Kwesibalo
- ▶Imahluko Yezibalo, Izinombolo Zamadijithi, kanye Nokucacisa
- ▶Imininingwane
- ▶Ukuqinisekisa Ubuqiniso Bomshini Wakho Wokubala
Okuvame Ukubuzwa
Ukusebenzisa i-SOLVE
I-SOLVE isebenzisa indlela kaNewton yokuhlawumbisela isixazululo sama-equation.
Phawula ukuthi i-SOLVE ingasetshenziswa kuyi-COMP Mode kuphela.
Okulandelayo kuchaza izinhlobo zezibalo izisombululo zazo ezingatholwa kusetshenziswa i-SOLVE.
Izibalo ezinesimeleli u-X: X2 + 2X - 2, Y = X + 5, X = sin(M), X + 3 = B + C
i-SOLVE ixazulula u-X. Isichazi esinjengo-X2 + 2X - 2 siphathwa njengo-X2 + 2X - 2 = 0.
Ukufakwa kwezibalo usebenzisa i-syntax elandelayo: {isibalo}, {isisombululo sesimeleli}
i-SOLVE ixazulula u-Y, ngokwesibonelo, uma isibalo sifakwe njengalokhu: Y = X + 5, Y
Kubalulekile!
Uma isibalo siqukethe okufakwayo kokusebenza okuhilela abakaki abavulayo (njengo-sin no-log), ungabasusi abakaki abavalayo.
Imisebenzi elandelayo ayivunyelwanga ngaphakathi kwesibalo: ∫, d/dx, Σ, Pol, Rec, ÷R.
Isibonelo: Ukuxazulula u-y = ax2 + b ngokuka-x lapho u-y = 0, a = 1, no-b = -2
(Y)
(=)
(A)
(X)
(B)
(SOLVE)
-
(1) Iziqondisi zokufaka inani lika-Y
(2) Inani lamanje lika-Y
- 0
1
2
-
(3) Inani lamanje lika-X
Faka inani lokuqala lika-X (Lapha, faka u-1):
- 1
Isikrini Sesisombululo
- Ukuphuma ku-SOLVE:
Phawula
Phakathi nesikhathi lapho ucindezela u-(SOLVE) uze uphume ku-SOLVE ngokucindezela ku-
, kufanele usebenzise izinqubo zokufaka Isibonisi Somugqa mayelana nokufaka.
Kubalulekile!
Kuye ngokuthi ufaka ini ngokuqondene nenani lika-X (inani lesisombululo), i-SOLVE kungenzeka ingakwazi ukuthola izisombululo. Uma lokhu kwenzeka, zama ukushintsha inani lokuqala ukuze libe seduze nesisombululo.
I-SOLVE kungenzeka ingakwazi ukunquma isisombululo esifanele, ngisho nalapho kunesisodwa.
I-SOLVE isebenzisa indlela ka-Newton, ngakho uma kunezisombululo eziningi, kuzobuyiswa esisodwa sazo kuphela.
Ngenxa yokulinganiselwa kwendlela ka-Newton, izisombululo kuvame ukuba nzima ukuzithola ezibalweni ezinjengalesi esilandelayo: y = sin(x), y = ex, y = √x.
Okuqukethwe Yisikrini Sezisombululo
Izisombululo zihlala ziboniswe ngokwendlela yedesimali.
(1) Isibalo (Isibalo osifakayo.)
(2) Isimeleli esixazululiwe se-
(3) Isisombululo
(4) Umphumela (Ohlangothini Lwesobunxele) - (Ohlangothini Lwesokudla)
"Umphumela (Ohlangothini Lwesobunxele) - (Ohlangothini Lwesokudla)" ubonisa imiphumela lapho uhlangothi lwesokudla lwesibalo lukhishiwe ohlangothini lwesobunxele, ngemuva kokwabela inani elitholiwe kusimeleli esixazululwayo. Njengoba lo mphumela usondela kokuyiqanda, yilapho kuba ukunemba kwesisombululo.
Isikrini Sokuqhubeka
I-SOLVE yenza ukuguqulela izikhathi ezimbalwa kusengaphambili. Uma kungenakuthola isisombululo, kubonisa isiqinisekiso esikrinini esikhombisa okuthi "Continue: [=]", esikubuza ukuthi uyafuna ukuqhubeka yini.
Cindezela ukuze uqhubeke noma
ukuze ukhansele isenzo se-SOLVE.
Isibonelo: Ukuxazulula y = x2 - x + 1 ngokuka-x lapho u-y = 3, 7, no-13.
(Y)
(=)
(X)
(X)
1
(SOLVE)
- 3
Faka inani lokuqala lika-X (Lapha, faka u-1):
- 1
7
13