General

Q4
Is it possible to accomplish calculations of complex numbers specially in polar form with scientific calculators?
A4
Yes. At the following model,the arithmetic operations on complex numbers can be easily managed using the Calculators.
The models: fx-991MS / fx-115MS / fx-912MS / fx-3650P / fx-3950P
These  kinds of calculations, which are used often in physical and technical fields, are explained here as a supplement to the calculator manual.

The complex numbers can be represented in two different forms:
Rectangular or Cartesian form: z = x+iy (In some notation j may be used instead of i.)
Polar or Phasor form: z = r∠θ or z = |z|e^θi. (In some notations φ may be used instead of θ.)

Example 1: Convert the complex number (z = -4+3i) into polar form.
1. In the COMPLEX Mode, set the angle unit to Degree (Deg).
  [MODE] [2](COMPLEX)
  [MODE]...[1](Deg)
2. Input the complex numbers  z=-4+3i.
  [(-)][4][+][3][ENG](i)[=]
3. The result in rectangular form.
  The value of real part:  -4
  The value of imaginary part after pressing [SHIFT][=] (Re<->Im):  3  (i)
4. The display change of the value of rectangular form is carried out at polar form.
  The absolute value of the number in polar form after pressing [SHFT][+](>r∠θ)[=]: 5
  The angle value after pressing [SHFT][=] (Re<->Im): 143.1301024
The result in polar form :5∠143.1301024 (Angle unit:Deg)

Example2: Convert the complex number (2∠60゜) into rectangular form.
1. In the COMPLEX Mode, set the angle unit to Degree (Deg).
  [MODE] [2](COMPLEX)
  [MODE]...[1](Deg)
2. Input the complex numbers  2∠60.
  [2][SHIFT][(-)](∠)[6][0][=]
3. The result in rectangular form.
  The value of real part:  1
  The value of imaginary part after pressing [SHIFT][=] (Re<->Im):  1.732050808 (i)
The result in rectangular form:  1+1.732050808i

It is possible to work with the angle unit Radian. When angle mode is set as Radian, the angle values can input as pi-Multipliers. (180゜ =π radian.)

Above Example2 is calculated in Radian.
1. In the COMPLEX Mode, set the angle unit to Radian(Rad).
 [MODE][2](COMPLEX)
 [MODE]...[2](Rad)
2.Input the complex numbers 2∠π/3. (60゜=π/3 radian.)
 [2][SHIFT][(-)](∠)[SHIFT] [EXP](π)[ab/c] [3][=]
3. The result in rectangular form.
 The value of real part: 1
 The value of imaginary part after pressing [SHIFT][=] (Re<->Im):  1.732050808 (i)

Complex Numbers – Calculation (Addition / Subtraction)

The two rectangular form complex numbers z1 and z2 are given. :
z1 = 4+2i, z2 = -1+5i
Example 3: Addition   z1+z2=3+7i
1. In the COMPLEX Mode, set the angle unit to Degree (Deg).
  [MODE] [2](COMPLEX)
  [MODE]...[1](Deg)
2. Input the value.  z1+z2.
Displayed Result:
 The value of real part: 3
 The value of imaginary part after pressing [SHIFT] [=](Re<->Im):  7  (i)


Example4: Subtraction  z1-z2=5-3i
1. In the COMPLEX Mode, set the angle unit to Degree (Deg).
  [MODE] [2](COMPLEX)
  [MODE]...[1](Deg)
2. Input the value.  z1-z2.
Displayed Result:
 The value of real part: 5
 The value of imaginary part after pressing [SHIFT] [=](Re<->Im):  -3  (i)


Complex Number – Calculation (Multiplication / Division)

The two polar form complex numbers z1 and z2 are given.(Angle unit:Degree):
 z1 =5∠70, z2 = 3∠45

Example 5:  Multiplication z1*z2=15∠115
1. Set the complex mode, the polar form for display of complex number calculation results and the angle unit Degree in setting.
  [MODE][2](COMPLEX)
  [MODE]...[1](Disp)[right cursor key][2](r∠θ)
  [MODE]...[1](Deg)
2.Input the value. z1*z2
Displayed Result:
 The absolute value of the number in polar form : 15
 The angle value after pressing [SHFT][=] (Re<->Im): 115

Example6: Division  z1/z2= 1.666666667∠ 25
 1. Set the complex mode, the polar form for display of complex number calculation results and the angle unit Degree in setting.
  [MODE][2](COMPLEX)
  [MODE]...[1](Disp)[right cursor key][2](r∠θ)
  [MODE]...[1](Deg)
2.Input the value. z1/z2
Displayed Result:
 The absolute value of the number in polar form : 1.666666667
 The angle value after pressing [SHFT][=] (Re<->Im): 25

3.The display change of the value of polar form is carried out at rectangular form.
 The value of real part after pressing [SHIFT][-](>a+bi)[=]: 1.510512978
 The value of imaginary part after pressing [SHIFT][=](Re<->Im): 0.704363769 (i)

How useful was this information?

SEND