Chapter 18

Statistical Graphs and Calculations

This chapter describes how to input statistical data into lists, how to calculate the mean, maximum and other statistical values, how to perform various statistical tests, how to determine the confidence interval, and how to produce a distribution of statistical data. It also tells you how to perform regression calculations.

18-1 Before Performing Statistical Calculations
18-2 Paired-Variable Statistical Calculation Examples
18-3 Calculating and Graphing Single-Variable Statistical Data
18-4 Calculating and Graphing Paired-Variable Statistical Data
18-5 Performing Statistical Calculations
18-6 Tests
18-7 Confidence Interval
18-8 Distribution

Important!
• This chapter contains a number of graph screen shots. In each case, new data values were input in order to highlight the particular characteristics of the graph being drawn. Note that when you try to draw a similar graph, the unit uses data values that you have input using the List function. Because of this, the graphs that appears on the screen when you perform a graphing operation will probably differ somewhat from those shown in this manual.
Before Performing Statistical Calculations

In the Main Menu, select the **STAT** icon to enter the STAT Mode and display the statistical data lists.

Use the statistical data lists to input data and to perform statistical calculations.

![Statistical Data Lists](image)

Use \(\text{\textarrow{\uparrow}}, \text{\textarrow{\downarrow}}, \text{\textarrow{\leftarrow}}, \text{\textarrow{\rightarrow}} \) to move the highlighting around the lists.

- **P.251**
 - {GRPH} ... {graph menu}

- **P.270**
 - {CALC} ... {statistical calculation menu}

- **P.277**
 - {TEST} ... {test menu}

- **P.294**
 - {INTR} ... {confidence interval menu}

- **P.304**
 - {DIST} ... {distribution menu}

- **P.234**
 - {SRT·A}/ {SRT·D} ... {ascending}/ {descending} sort

- **P.233**
 - {DEL}/ {DEL·A} ... deletes {highlighted data}/ {all data}

- **P.234**
 - {INS} ... {inserts new cell at highlighted cell}

- The procedures you should use for data editing are identical to those you use with the list function. For details, see “17. List Function”.

250
18-2 Paired-Variable Statistical Calculation Examples

Once you input data, you can use it to produce a graph and check for tendencies. You can also use a variety of different regression calculations to analyze the data.

Example

To input the following two data groups and perform statistical calculations

\{0.5, 1.2, 2.4, 4.0, 5.2\}
\{-2.1, 0.3, 1.5, 2.0, 2.4\}

■ Inputting Data into Lists

Input the two groups of data into List 1 and List 2.

Once data is input, you can use it for graphing and statistical calculations.

- Input values can be up to 10 digits long.
- You can use the \(\uparrow\), \(\downarrow\), \(\leftarrow\), and \(\rightarrow\) keys to move the highlighting to any cell in the lists for data input.

■ Plotting a Scatter Diagram

Use the data input above to plot a scatter diagram.

- To return to the statistical data list, press \(\text{EXIT}\) or \(\text{SHIFT} \quad \text{QUIT}\).

- View Window parameters are normally set automatically for statistical graphing. If you want to set View Window parameters manually, you must change the Stat Wind item to “Manual”.

Note that View Window parameters are set automatically for the following types of graphs regardless of whether or not the Stat Wind item is set to “Manual”:

1-Sample \(Z\) Test, 2-Sample \(Z\) Test, 1-Prop \(Z\) Test, 2-Prop \(Z\) Test, 1-Sample \(t\) Test, 2-Sample \(t\) Test, \(\chi^2\) Test, 2-Sample \(F\) Test (\(x\)-axis only disregarded).
While the statistical data list is on the display, perform the following procedure.

SHIFT SETUP F2 (Man)
EXIT (Returns to previous menu.)

• It is often difficult to spot the relationship between two sets of data (such as height and shoe size) by simply looking at the numbers. Such relationship become clear, however, when we plot the data on a graph, using one set of values as \(x\)-data and the other set as \(y\)-data.

The default setting automatically uses List 1 data as \(x\)-axis (horizontal) values and List 2 data as \(y\)-axis (vertical) values. Each set of \(x/y\) data is a point on the scatter diagram.

Changing Graph Parameters

Use the following procedures to specify the graph draw/non-draw status, the graph type, and other general settings for each of the graphs in the graph menu (GPH1, GPH2, GPH3).

While the statistical data list is on the display, press F1 (GRPH) to display the graph menu, which contains the following items.

- \{GPH1\}/\{GPH2\}/\{GPH3\} ... only one graph \(1/2/3\) drawing
- The initial default graph type setting for all the graphs (Graph 1 through Graph 3) is scatter diagram, but you can change to one of a number of other graph types.
- \{SEL\} ... {simultaneous graph (GPH1, GPH2, GPH3) selection}
- \{SET\} ... {graph settings (graph type, list assignments)}

• You can specify the graph draw/non-draw status, the graph type, and other general settings for each of the graphs in the graph menu (GPH1, GPH2, GPH3).

• You can press any function key (F1, F2, F3) to draw a graph regardless of the current location of the highlighting in the statistical data list.

1. Graph draw/non-draw status \[GRPH]-[SEL]

The following procedure can be used to specify the draw (On)/non-draw (Off) status of each of the graphs in the graph menu.

To specify the draw/non-draw status of a graph

1. Pressing F4 (SEL) displays the graph On/Off screen.
• Note that the StatGraph1 setting is for Graph 1 (GPH1 of the graph menu), StatGraph2 is for Graph 2, and StatGraph3 is for Graph 3.

2. Use the cursor keys to move the highlighting to the graph whose status you want to change, and press the applicable function key to change the status.

• {On}/(Off) ... setting {On (draw)}/(Off (non-draw))
• {DRAW} ... {draws all On graphs}

3. To return to the graph menu, press EXIT.

● To draw a graph

Example To draw a scatter diagram of Graph 3 only

F1 (GRPH) F4 (SEL) F2 (Off)

F3 F1 (On)

F6 (DRAW)

2. General graph settings [GRPH]-[SET]

This section describes how to use the general graph settings screen to make the following settings for each graph (GPH1, GPH2, GPH3).

• Graph Type
The initial default graph type setting for all the graphs is scatter graph. You can select one of a variety of other statistical graph types for each graph.

• List
The initial default statistical data is List 1 for single-variable data, and List 1 and List 2 for paired-variable data. You can specify which statistical data list you want to use for x-data and y-data.

• Frequency
Normally, each data item or data pair in the statistical data list is represented on a graph as a point. When you are working with a large number of data items however, this can cause problems because of the number of plot points on the graph. When this happens, you can specify a frequency list that contains values indicating the number of instances (the frequency) of the data items in the corresponding cells of the lists you are using for x-data and y-data. Once you do this, only one point is plotted for the multiple data items, which makes the graph easier to read.

• Mark Type
This setting lets you specify the shape of the plot points on the graph.
To display the general graph settings screen [GRPH]-[SET]

Pressing [SET] displays the general graph settings screen.

- The settings shown here are examples only. The settings on your general graph settings screen may differ.

StatGraph (statistical graph specification)
- \{GPH1\}/\{GPH2\}/\{GPH3\} ... graph \{1\}/\{2\}/\{3\}

Graph Type (graph type specification)
- \{Scat\}/\{xy\}/\{NPP\} ... (scatter diagram)/\{xy line graph\}/\{normal probability plot\}
- \{Hist\}/\{Box\}/\{Box\}/\{N·Dis\}/\{Brkn\} ... (histogram)/\{med-box graph\}/\{mean-box graph\}/\{normal distribution curve\}/\{broken line graph\}
- \{X\}/\{Med\}/\{X^2\}/\{X^3\}/\{X^4\} ... \{linear regression graph\}/\{Med-Med graph\}/\{quadratic regression graph\}/\{cubic regression graph\}/\{quartic regression graph\}
- \{Log\}/\{Exp\}/\{Pwr\}/\{Sin\}/\{Lgst\} ... \{logarithmic regression graph\}/\{exponential regression graph\}/\{power regression graph\}/\{sine regression graph\}/\{logistic regression graph\}

XList (x-axis data list)
- \{List1\}/\{List2\}/\{List3\}/\{List4\}/\{List5\}/\{List6\} ... \{List 1\}/\{List 2\}/\{List 3\}/\{List 4\}/\{List 5\}/\{List 6\}

YList (y-axis data list)
- \{List1\}/\{List2\}/\{List3\}/\{List4\}/\{List5\}/\{List6\} ... \{List 1\}/\{List 2\}/\{List 3\}/\{List 4\}/\{List 5\}/\{List 6\}

Frequency (number of data items)
- \{1\} ... \{1-to-1 plot\}
- \{List1\}/\{List2\}/\{List3\}/\{List4\}/\{List5\}/\{List6\} ... frequency data in \{List 1\}/\{List 2\}/\{List 3\}/\{List 4\}/\{List 5\}/\{List 6\}

Mark Type (plot mark type)
- \{□\}/\{×\}/\{●\} ... plot points: \{□\}/\{×\}/\{●\}
• **Graph Color (graph color specification)**
 - {Blue}/(Orng)/{Grn} ... {blue}/{orange}/{green}

• **Outliers (outliers specification)**
 - {On}/(Off) ... {display}/{do not display} Med-Box outliers

Drawing an xy Line Graph

Paired data items can be used to plot a scatter diagram. A scatter diagram where the points are linked is an xy line graph.

![xy line graph image]

Press **EXIT** or **SHIFT** **EXIT** to return to the statistical data list.

Drawing a Normal Probability Plot

Normal probability plot contrasts the cumulative proportion of variables with the cumulative proportion of a normal distribution and plots the result. The expected values of the normal distribution are used as the vertical axis, while the observed values of the variable being tested are on the horizontal axis.

![normal probability plot image]

Press **EXIT** or **SHIFT** **EXIT** to return to the statistical data list.

Selecting the Regression Type

After you graph paired-variable statistical data, you can use the function menu at the bottom of the display to select from a variety of different types of regression.

- {X}/(Med)/(X^2)/(X^3)/(X^4)/(Log)/(Exp)/(Pwr)/(Sin)/(Lgst) ... {linear regression}/(Med-Med)/(quadratic regression)/(cubic regression)/(quartic regression)/(logarithmic regression)/(exponential regression)/(power regression)/(sine regression)/(logistic regression) calculation and graphing
- {2VAR} ... {paired-variable statistical results}
Displaying Statistical Calculation Results

Whenever you perform a regression calculation, the regression formula parameter (such as \(a \) and \(b \) in the linear regression \(y = ax + b \)) calculation results appear on the display. You can use these to obtain statistical calculation results.

Regression parameters are calculated as soon as you press a function key to select a regression type while a graph is on the display.

Example

To display logarithmic regression parameter calculation results while a scatter diagram is on the display

\[F_6(>) F_1(\text{Log}) \]

Graphing Statistical Calculation Results

You can use the parameter calculation result menu to graph the displayed regression formula.

- \{COPY\} ... {stores the displayed regression formula as a graph function}
- \{DRAW\} ... {graphs the displayed regression formula}

Example

To graph a logarithmic regression

While logarithmic regression parameter calculation results are on the display, press \(F_6 \) (DRAW).

For details on the meanings of function menu items at the bottom of the display, see “Selecting the Regression Type”.

18 - 2 Paired-Variable Statistical Calculation Examples
Single-variable data is data with only a single variable. If you are calculating the average height of the members of a class for example, there is only one variable (height).

Single-variable statistics include distribution and sum. The following types of graphs are available for single-variable statistics.

Drawing a Histogram (Bar Graph)

From the statistical data list, press \(F_1 \) (GRPH) to display the graph menu, press \(F_6 \) (SET), and then change the graph type of the graph you want to use (GPH1, GPH2, GPH3) to histogram (bar graph).

Data should already be input in the statistical data list (see “Inputting Data into Lists”). Draw the graph using the procedure described under “Changing Graph Parameters”.

The display screen appears as shown above before the graph is drawn. At this point, you can change the Start and pitch values.

Med-box Graph (Med-Box)

This type of graph lets you see how a large number of data items are grouped within specific ranges. A box encloses all the data in an area from the first quartile (Q1) to the third quartile (Q3), with a line drawn at the median (Med). Lines (called whiskers) extend from either end of the box up to the minimum and maximum of the data.

From the statistical data list, press \(F_1 \) (GRPH) to display the graph menu, press \(F_6 \) (SET), and then change the graph type of the graph you want to use (GPH1, GPH2, GPH3) to med-box graph.
To plot the data that falls outside the box, first specify “MedBox” as the graph type. Then, on the same screen you use to specify the graph type, turn the outliers item “On”, and draw the graph.

Mean-box Graph

This type of graph shows the distribution around the mean when there is a large number of data items. A line is drawn at the point where the mean is located, and then a box is drawn so that it extends below the mean up to the population standard deviation ($\bar{x} - x\sigma_n$) and above the mean up to the population standard deviation ($\bar{x} + x\sigma_n$). Lines (called whiskers) extend from either end of the box up to the minimum (minX) and maximum (maxX) of the data.

From the statistical data list, press \(\text{F3} \) (GRPH) to display the graph menu, press \(\text{F6} \) (SET), and then change the graph type of the graph you want to use (GPH1, GPH2, GPH3) to mean-box graph.

Normal Distribution Curve

The normal distribution curve is graphed using the following normal distribution function.

$$y = \frac{1}{\sqrt{(2\pi)x\sigma_n}} e^{-\frac{(x-\bar{x})^2}{2x\sigma_n^2}}$$

The distribution of characteristics of items manufactured according to some fixed standard (such as component length) fall within normal distribution. The more data items there are, the closer the distribution is to normal distribution.

From the statistical data list, press \(\text{F3} \) (GRPH) to display the graph menu, press \(\text{F6} \) (SET), and then change the graph type of the graph you want to use (GPH1, GPH2, GPH3) to normal distribution.
Broken Line Graph

A broken line graph is formed by plotting the data in one list against the frequency of each data item in another list and connecting the points with straight lines. Calling up the graph menu from the statistical data list, pressing 6 (SET), changing the settings to drawing of a broken line graph, and then drawing a graph creates a broken line graph.

The display screen appears as shown above before the graph is drawn. At this point, you can change the Start and pitch values.

Displaying Single-Variable Statistical Results

Single-variable statistics can be expressed as both graphs and parameter values. When these graphs are displayed, the menu at the bottom of the screen appears as below.

- `{1VAR}` ... `{single-variable calculation result menu}`

Pressing 1 (1VAR) displays the following screen.

- Use \(\nabla \) to scroll the list so you can view the items that run off the bottom of the screen.

The following describes the meaning of each of the parameters.

\[
\begin{align*}
\bar{x} & \quad \text{mean of data} \\
\Sigma x & \quad \text{sum of data} \\
\Sigma x^2 & \quad \text{sum of squares} \\
\sigma_n & \quad \text{population standard deviation} \\
\sigma_{n-1} & \quad \text{sample standard deviation} \\
n & \quad \text{number of data items}
\end{align*}
\]
minX minimum
Q1 first quartile
Med median
Q3 third quartile
 \bar{x} - x_{\sigma} data mean – population standard deviation
 \bar{x} + x_{\sigma} data mean + population standard deviation
maxX maximum
Mod mode

• Press \text{F6} (DRAW) to return to the original single-variable statistical graph.
18-4 Calculating and Graphing Paired-Variable Statistical Data

Under “Plotting a Scatter Diagram,” we displayed a scatter diagram and then performed a logarithmic regression calculation. Let’s use the same procedure to look at the various regression functions.

■ Linear Regression Graph

Linear regression plots a straight line that passes close to as many data points as possible, and returns values for the slope and y-intercept (y-coordinate when \(x = 0\)) of the line.

The graphic representation of this relationship is a linear regression graph.

\[
\begin{align*}
\text{Linear Reg} & \\
\quad a & = 0.82689846 \\
\quad b & = -1.3774219 \\
\quad r & = 0.88585165 \\
\quad r^2 & = 0.78437885 \\
\quad y & = ax + b
\end{align*}
\]

\(a\) ... regression coefficient (slope)

\(b\) ... regression constant term (y-intercept)

\(r\) ... correlation coefficient

\(r^2\) ... coefficient of determination

■ Med-Med Graph

When it is suspected that there are a number of extreme values, a Med-Med graph can be used in place of the least squares method. This is also a type of linear regression, but it minimizes the effects of extreme values. It is especially useful in producing highly reliable linear regression from data that includes irregular fluctuations, such as seasonal surveys.

\[
\begin{align*}
\text{Med-Med} & \\
\quad a & = 5.55676103 \\
\quad b & = -0.4245704 \\
\quad y & = ax + b
\end{align*}
\]

\(a\) ... regression coefficient (slope)

\(b\) ... regression constant term (y-intercept)

\(y\) ... equation for the line
P.254

A quadratic/cubic/quartic regression graph represents connection of the data points of a scatter diagram. It actually is a scattering of so many points that are close enough together to be connected. The formula that represents this is quadratic/cubic/quartic regression.

Ex. Quadratic regression

\[y = ax^2 + bx + c \]

Quadratic regression
- \(a \) regression second coefficient
- \(b \) regression first coefficient
- \(c \) regression constant term (y-intercept)

Cubic regression
- \(a \) regression third coefficient
- \(b \) regression second coefficient
- \(c \) regression first coefficient
- \(d \) regression constant term (y-intercept)

Quartic regression
- \(a \) regression fourth coefficient
- \(b \) regression third coefficient
- \(c \) regression second coefficient
- \(d \) regression first coefficient
- \(e \) regression constant term (y-intercept)
Logarithmic Regression Graph

Logarithmic regression expresses \(y \) as a logarithmic function of \(x \). The standard logarithmic regression formula is \(y = a + b \times \ln x \), so if we say that \(X = \ln x \), the formula corresponds to linear regression formula \(y = a + bX \).

<table>
<thead>
<tr>
<th>(a)</th>
<th>regression constant term</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>regression coefficient</td>
</tr>
<tr>
<td>(r)</td>
<td>correlation coefficient</td>
</tr>
<tr>
<td>(r^2)</td>
<td>coefficient of determination</td>
</tr>
</tbody>
</table>

Exponential Regression Graph

Exponential regression expresses \(y \) as a proportion of the exponential function of \(x \). The standard exponential regression formula is \(y = a \times e^{bx} \), so if we take the logarithms of both sides we get \(\ln y = \ln a + bx \). Next, if we say \(Y = \ln y \), and \(A = \ln a \), the formula corresponds to linear regression formula \(Y = A + bx \).

<table>
<thead>
<tr>
<th>(a)</th>
<th>regression coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>regression constant term</td>
</tr>
<tr>
<td>(r)</td>
<td>correlation coefficient</td>
</tr>
<tr>
<td>(r^2)</td>
<td>coefficient of determination</td>
</tr>
</tbody>
</table>
Power Regression Graph

Exponential regression expresses y as a proportion of the power of x. The standard power regression formula is $y = a \times x^b$, so if we take the logarithm of both sides we get $\ln y = \ln a + b \times \ln x$. Next, if we say $X = \ln x$, $Y = \ln y$, and $A = \ln a$, the formula corresponds to linear regression formula $Y = A + bX$.

$$a \ldots \text{regression coefficient}$$
$$b \ldots \text{regression power}$$
$$r \ldots \text{correlation coefficient}$$
$$r^2 \ldots \text{coefficient of determination}$$

Sine Regression Graph

Sine regression is best applied for phenomena that repeats within a specific range, such as tidal movements.

$$y = a \cdot \sin(bx + c) + d$$

While the statistical data list is on the display, perform the following key operation.

$$a \ldots \text{regression coefficient}$$
$$b \ldots \text{regression power}$$
$$c \ldots \text{correlation coefficient}$$
$$d \ldots \text{coefficient of determination}$$

Drawing a sine regression graph causes the angle unit setting of the calculator to automatically change to Rad (radians). The angle unit does not change when you perform a sine regression calculation without drawing a graph.
Gas bills, for example, tend to be higher during the winter when heater use is more frequent. Periodic data, such as gas usage, is suitable for application of sine regression.

Example

To perform sine regression using the gas usage data shown below

List 1 (Month Data)
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48}

List 2 (Gas Usage Meter Reading)

Input the above data and plot a scatter diagram.

![Graph](image)

Execute the calculation and produce sine regression analysis results.

![Sine Regression Analysis](image)

Display a sine regression graph based on the analysis results.

![Sine Regression Graph](image)

Logistic Regression Graph

Logistic regression is best applied for phenomena in which there is a continual increase in one factor as another factor increases until a saturation point is reached. Possible applications would be the relationship between medicinal dosage and effectiveness, advertising budget and sales, etc.
Imagine a country that started out with a television diffusion rate of 0.3% in 1966, which grew rapidly until diffusion reached virtual saturation in 1980. Use the paired statistical data shown below, which tracks the annual change in the diffusion rate, to perform logistic regression.

Example

List1(Year Data)
{66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83}

List2(Diffusion Rate)
{0.3, 1.6, 5.4, 13.9, 26.3, 42.3, 61.1, 75.8, 85.9, 90.3, 93.7, 95.4, 97.8, 97.8, 98.2, 98.5, 98.9, 98.8}

Perform the calculation, and the logistic regression analysis values appear on the display.
Draw a logistic regression graph based on the parameters obtained from the analytical results.

\[F_6 \text{(DRAW)} \]

\section*{Residual Calculation}

Actual plot points (y-coordinates) and regression model distance can be calculated during regression calculations.

While the statistical data list is on the display, recall the set up screen to specify a list ("List 1" through "List 6") for "Resid List". Calculated residual data is stored in the specified list.

The vertical distance from the plots to the regression model will be stored.

Plots that are higher than the regression model are positive, while those that are lower are negative.

Residual calculation can be performed and saved for all regression models.

Any data already existing in the selected list is cleared. The residual of each plot is stored in the same precedence as the data used as the model.

\section*{Displaying Paired-Variable Statistical Results}

Paired-variable statistics can be expressed as both graphs and parameter values. When these graphs are displayed, the menu at the bottom of the screen appears as below.

- \{2VAR\} ... \{paired-variable calculation result menu\}

Pressing \[F_4 \text{ (2VAR)} \] displays the following screen.
• Use \(\text{cursor} \) to scroll the list so you can view the items that run off the bottom of the screen.

\[
\begin{align*}
\bar{x} & \quad \text{mean of } x \text{List data} \\
\Sigma x & \quad \text{sum of } x \text{List data} \\
\Sigma x^2 & \quad \text{sum of squares of } x \text{List data} \\
\sigma_x & \quad \text{population standard deviation of } x \text{List data} \\
\sigma_{x \rightarrow 1} & \quad \text{sample standard deviation of } x \text{List data} \\
n & \quad \text{number of } x \text{List data items} \\
\bar{y} & \quad \text{mean of } y \text{List data} \\
\Sigma y & \quad \text{sum of } y \text{List data} \\
\Sigma y^2 & \quad \text{sum of squares of } y \text{List data} \\
\sigma_y & \quad \text{population standard deviation of } y \text{List data} \\
\sigma_{y \rightarrow 1} & \quad \text{sample standard deviation of } y \text{List data} \\
\Sigma xy & \quad \text{sum of the product of data stored in } x \text{List and } y \text{List} \\
\min X & \quad \text{minimum of } x \text{List data} \\
\max X & \quad \text{maximum of } x \text{List data} \\
\min Y & \quad \text{minimum of } y \text{List data} \\
\max Y & \quad \text{maximum of } y \text{List data}
\end{align*}
\]

Copying a Regression Graph Formula to the Graph Mode

After you perform a regression calculation, you can copy its formula to the GRAPH Mode.

The following are the functions that are available in the function menu at the bottom of the display while regression calculation results are on the screen.

• \{COPY\} ... \{stores the displayed regression formula to the GRAPH Mode\}
• \{DRAW\} ... \{graphs the displayed regression formula\}

1. Press \(\text{F5} \) (COPY) to copy the regression formula that produced the displayed data to the GRAPH Mode.

Note that you cannot edit regression formulas for graph formulas in the GRAPH Mode.

2. Press \(\text{Ex} \) to save the copied graph formula and return to the previous regression calculation result display.
Multiple Graphs

You can draw more than one graph on the same display by using the procedure under “Changing Graph Parameters” to set the graph draw (On)/non-draw (Off) status of two or all three of the graphs to draw “On”, and then pressing F6 (DRAW). After drawing the graphs, you can select which graph formula to use when performing single-variable statistic or regression calculations.

- The text at the top of the screen indicates the currently selected graph (StatGraph1 = Graph 1, StatGraph2 = Graph 2, StatGraph3 = Graph 3).

1. Use ▲ and ▼ to change the currently selected graph. The graph name at the top of the screen changes when you do.

2. When graph you want to use is selected, press w.

Now you can use the procedures under “Displaying Single-Variable Statistical Results” and “Displaying Paired-Variable Statistical Results” to perform statistical calculations.
Performing Statistical Calculations

All of the statistical calculations up to this point were performed after displaying a graph. The following procedures can be used to perform statistical calculations alone.

To specify statistical calculation data lists

You have to input the statistical data for the calculation you want to perform and specify where it is located before you start a calculation. Display the statistical data and then press \(\text{F}2(\text{CALC})\text{F}6(\text{SET}) \).

The following is the meaning for each item.

- **1Var XList** specifies list where single-variable statistic \(x \) values (XList) are located
- **1Var Freq** specifies list where single-variable frequency values (Frequency) are located
- **2Var XList** specifies list where paired-variable statistic \(x \) values (XList) are located
- **2Var YList** specifies list where paired-variable statistic \(y \) values (YList) are located
- **2Var Freq** specifies list where paired-variable frequency values (Frequency) are located

Calculations in this section are performed based on the above specifications.

Single-Variable Statistical Calculations

In the previous examples from “Drawing a Normal Probability Plot” and “Histogram (Bar Graph)” to “Line Graph,” statistical calculation results were displayed after the graph was drawn. These were numeric expressions of the characteristics of variables used in the graphic display.

These values can also be directly obtained by displaying the statistical data list and pressing \(\text{F}2(\text{CALC})\text{F}1(\text{1VAR}) \).
Now you can use the cursor keys to view the characteristics of the variables.
For details on the meanings of these statistical values, see “Displaying Single-Variable Statistical Results”.

Paired-Variable Statistical Calculations

In the previous examples from “Linear Regression Graph” to “Logistic Regression Graph,” statistical calculation results were displayed after the graph was drawn. These were numeric expressions of the characteristics of variables used in the graphic display.

These values can also be directly obtained by displaying the statistical data list and pressing F2 (CALC) F2 (2VAR).

Now you can use the cursor keys to view the characteristics of the variables.
For details on the meanings of these statistical values, see “Displaying Paired-Variable Statistical Results”.

Regression Calculation

In the explanations from “Linear Regression Graph” to “Logistic Regression Graph,” regression calculation results were displayed after the graph was drawn. Here, the regression line and regression curve is represented by mathematical expressions.

You can directly determine the same expression from the data input screen.
Pressing F2 (CALC) F3 (REG) displays a function menu, which contains the following items.

- \{X\}/\{(Med)\}/\{X^2\}/\{X^3\}/\{X^4\}/\{Log\}/\{Exp\}/\{Pwr\}/\{Sin\}/\{Lgst\} ... \{linear regression\}/\{(Med-Med)\}/\{quadratic regression\}/\{cubic regression\}/\{quartic regression\}/\{logarithmic regression\}/\{exponential regression\}/\{power regression\}/\{sine regression\}/\{logistic regression\} parameters

Example

To display single-variable regression parameters

F2 (CALC) F3 (REG) F1 (X)

The meaning of the parameters that appear on this screen is the same as that for “Linear Regression Graph” to “Logistic Regression Graph”.

Performing Statistical Calculations

18 - 5
Estimated Value Calculation \((\hat{x}, \hat{y})\)

After drawing a regression graph with the **STAT Mode**, you can use the **RUN Mode** to calculate estimated values for the regression graph’s \(x\) and \(y\) parameters.

- **Note that you cannot obtain estimated values for a Med-Med, quadratic regression, cubic regression, quartic regression, sine regression, or logistic regression graph.**

Example To perform power regression using the nearby data and estimate the values of \(\hat{y}\) and \(\hat{x}\) when \(x_i = 40\) and \(y_i = 1000\)

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(y_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>2410</td>
</tr>
<tr>
<td>30</td>
<td>3033</td>
</tr>
<tr>
<td>33</td>
<td>3895</td>
</tr>
<tr>
<td>35</td>
<td>4491</td>
</tr>
<tr>
<td>38</td>
<td>5717</td>
</tr>
</tbody>
</table>

1. In the Main Menu, select the **STAT** icon and enter the STAT Mode.
2. Input data into the list and draw the power regression graph*.
3. In the Main Menu, select the **RUN** icon and enter the RUN Mode.
4. Press the keys as follows.
 - **4 0** (value of \(x_i\))
 - **S2N** **F5** (**STAT**) **F2** (**\(\hat{y}\)**) **EX**
 - The estimated value \(\hat{y}\) is displayed for \(x_i = 40\).
 - **1 0 0 0** (value of \(y_i\))
 - **F1** (**\(\hat{x}\)**) **EX**
 - The estimated value \(\hat{x}\) is displayed for \(y_i = 1000\).
Normal Probability Distribution Calculation and Graphing

You can calculate and graph normal probability distributions for single-variable statistics.

Normal probability distribution calculations

Use the RUN Mode to perform normal probability distribution calculations. Press \(\text{OPTN} \) in the RUN Mode to display the option number and then press \(\text{F6 (} \text{PROB} \) \(\text{F6 (} \text{G} \text{)} \) to display a function menu, which contains the following items.

- \(\{P(t)\}/\{Q(t)\}/\{R(t)\} \) ... obtains normal probability \(\{P(t)\}/\{Q(t)\}/\{R(t)\} \) value
- \(\{t(x)\} \) ... obtains normalized variate \(t(x) \) value

- Normal probability \(P(t) \), \(Q(t) \), and \(R(t) \), and normalized variate \(t(x) \) are calculated using the following formulas.

\[
\begin{align*}
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{u^2}{2}} du & = P(t) \\
\frac{1}{\sqrt{2\pi}} \int_{0}^{t} e^{-\frac{u^2}{2}} du & = Q(t) \\
\frac{1}{\sqrt{2\pi}} \int_{t}^{+\infty} e^{-\frac{u^2}{2}} du & = R(t) \\
\end{align*}
\]

\[t(x) = \frac{x - \bar{x}}{S_n} \]

Example

The following table shows the results of measurements of the height of 20 college students. Determine what percentage of the students fall in the range 160.5 cm to 175.5 cm. Also, in what percentile does the 175.5 cm tall student fall?

<table>
<thead>
<tr>
<th>Class no.</th>
<th>Height (cm)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>158.5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>160.5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>163.3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>167.5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>170.2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>173.3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>175.5</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>178.6</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>180.4</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>186.7</td>
<td>1</td>
</tr>
</tbody>
</table>

1. In the STAT Mode, input the height data into List 1 and the frequency data into List 2.
Performing Statistical Calculations

2. Use the **STAT Mode** to perform the single-variable statistical calculations.

 ![STAT Mode Display](image)

 - F2 (CALC) F6 (SET)
 - F1 (List1) V F3 (List2) EXIT F1 (1VAR)

3. Press **MENU** to display the Main Menu, and then enter the **RUN Mode**. Next, press **OPTN** to display the option menu and then F6 (>) F3 (PROB) F6 (>).

 - You obtain the normalized variate immediately after performing single-variable statistical calculations only.

 ![Normalized Variate](image)

 - **F4 (t[]) 1 6 0 5 1 EXIT**
 (Normalized variate t for 160.5cm)
 Result: -1.633855948 (≈ -1.634)

 - **F4 (t[]) 1 7 5 5 1 EXIT**
 (Normalized variate t for 175.5cm)
 Result: 0.4963343361 (≈ 0.496)

 - **F1 (P[]) 0 4 9 6 1 EXIT**
 (Percentage of total)
 Result: 0.638921 (63.9% of total)

 - **F3 (R[]) 0 4 9 6 1 EXIT**
 (Percentile)
 Result: 0.30995 (31.0 percentile)
Normal Probability Graphing

You can graph a normal probability distribution with Graph Y = in the Sketch Mode.

Example To graph normal probability P(0.5)

Perform the following operation in the **RUN Mode**.

\[\text{Shift} \ F4 \ (\text{Sketch}) \ F1 \ (\text{Cls}) \ EX\]
\[F5 \ (\text{GRPH}) \ F1 \ (Y=) \ \text{OPTN} \ F6 \ (>) \ F3 \ \text{(PROB)}\]
\[F6 \ (>) \ F1 \ (P()) \ 0 \ 5 \ 1 \ \text{EX}\]

The following shows the View Window settings for the graph.

\[\text{Ymin} \sim \text{Ymax} -0.1 \ 0.45\]
\[\text{Xmin} \sim \text{Xmax} -3.2 \ 3.2\]
The Z Test provides a variety of different standardization-based tests. They make it possible to test whether or not a sample accurately represents the population when the standard deviation of a population (such as the entire population of a country) is known from previous tests. Z testing is used for market research and public opinion research, that need to be performed repeatedly.

1-Sample Z Test tests for unknown population mean when the population standard deviation is known.

2-Sample Z Test tests the equality of the means of two populations based on independent samples when both population standard deviations are known.

1-Prop Z Test tests for an unknown proportion of successes.

2-Prop Z Test tests to compare the proportion of successes from two populations.

The t Test uses the sample size and obtained data to test the hypothesis that the sample is taken from a particular population. The hypothesis that is the opposite of the hypothesis being proven is called the null hypothesis, while the hypothesis being proved is called the alternative hypothesis. The t-test is normally applied to test the null hypothesis. Then a determination is made whether the null hypothesis or alternative hypothesis will be adopted.

When the sample shows a trend, the probability of the trend (and to what extent it applies to the population) is tested based on the sample size and variance size. Inversely, expressions related to the t test are also used to calculate the sample size required to improve probability. The t test can be used even when the population standard deviation is not known, so it is useful in cases where there is only a single survey.

1-Sample t Test tests the hypothesis for a single unknown population mean when the population standard deviation is unknown.

2-Sample t Test compares the population means when the population standard deviations are unknown.

LinearReg t Test calculates the strength of the linear association of paired data.

In addition to the above, a number of other functions are provided to check the relationship between samples and populations.

χ^2 Test tests hypotheses concerning the proportion of samples included in each of a number of independent groups. Mainly, it generates cross-tabulation of two categorical variables (such as yes, no) and evaluates the independence of these variables. It could be used, for example, to evaluate the relationship between whether or not a driver has ever been involved in a traffic accident and that person’s knowledge of traffic regulations.
2-Sample F Test tests the hypothesis that there will be no change in the result for a population when a result of a sample is composed of multiple factors and one or more of the factors is removed. It could be used, for example, to test the carcinogenic effects of multiple suspected factors such as tobacco use, alcohol, vitamin deficiency, high coffee intake, inactivity, poor living habits, etc.

ANOVA tests the hypothesis that the population means of the samples are equal when there are multiple samples. It could be used, for example, to test whether or not different combinations of materials have an effect on the quality and life of a final product.

The following pages explain various statistical calculation methods based on the principles described above. Details concerning statistical principles and terminology can be found in any standard statistics textbook.

While the statistical data list is on the display, press F3 (TEST) to display the test menu, which contains the following items.

- (Z)/(t)/(χ^2)/(F) ... (Z)/(t)/(χ^2)/(F) test
- {ANOV} ... {analysis of variance (ANOVA)}

About data type specification
For some types of tests you can select data type using the following menu.

- {List}/({Var}) ... specifies {list data}/({parameter data})

Z Test
You can use the following menu to select from different types of Z Test.

- {1-S}/(2-S)/(1-P)/(2-P) ... {1-Sample}/{2-Sample}/(1-Prop)/(2-Prop) Z Test

1-Sample Z Test
This test is used when the sample standard deviation for a population is known to test the hypothesis. The 1-Sample Z Test is applied to the normal distribution.

$$Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

- \bar{x}: sample mean
- μ_0: assumed population mean
- σ: population standard deviation
- n: sample size

Perform the following key operations from the statistical data list.

F3 (TEST)
F1 (Z)
F1 (1-S)
The following shows the meaning of each item in the case of list data specification.

Data data type
\(\mu\) population mean value test conditions ("\(\neq \mu_0\)" specifies two-tail test, "\(< \mu_0\)" specifies lower one-tail test, "\(> \mu_0\)" specifies upper one-tail test.)
\(\mu_0\) assumed population mean
\(\sigma\) population standard deviation (\(\sigma > 0\))
List list whose contents you want to use as data (List 1 to 6)
Freq frequency (1 or List 1 to 6)
Execute executes a calculation or draws a graph

The following shows the meaning of parameter data specification items that are different from list data specification.

\(x\) sample mean
\(n\) sample size (positive integer)

Example

To perform a 1-Sample \(Z\) Test for one list of data

For this example, we will perform a \(\mu < \mu_0\) test for the data List1 = \{11.2, 10.9, 12.5, 11.3, 11.7\}, when \(\mu_0 = 11.5\) and \(\sigma = 3\).

\[
\begin{array}{c}
\text{F1 (List)} \downarrow \text{F2} (<) \downarrow \\
1 1 \downarrow 5 \uparrow \text{EX} \\
3 \uparrow \text{EX} \\
\text{F1 (List1)} \downarrow \text{F1} (1) \downarrow \\
\text{F1 (CALC)} \\
\end{array}
\]

\(\mu < 11.5\) assumed population mean and direction of test
\(z\) \(z\) value
\(p\) p-value
\(\bar{x}\) sample mean
\(x\sigma_n^{-1}\) sample standard deviation
\(n\) sample size

\(\text{F6 (DRAW)}\) can be used in place of \(\text{F1 (CALC)}\) in the final Execute line to draw a graph.
Perform the following key operations from the statistical result screen.

- **EXIT** (To data input screen)
- **↓↓↓↓↓** (To Execute line)
- **F6** (DRAW)

2-Sample Z Test

This test is used when the sample standard deviations for two populations are known to test the hypothesis. The **2-Sample Z Test** is applied to the normal distribution.

\[
Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}
\]

\(\bar{x}_1\) : sample 1 mean
\(\bar{x}_2\) : sample 2 mean
\(\sigma\) : population standard deviation of sample 1
\(\sigma\) : population standard deviation of sample 2
\(n_1\) : sample 1 size
\(n_2\) : sample 2 size

Perform the following key operations from the statistical data list.

- **F3** (TEST)
- **F1** (Z)
- **F2** (2-S)

The following shows the meaning of each item in the case of list data specification.

- **Data** data type
- **\(\mu\)** population mean value test conditions ("\(\neq\) \(\mu\)" specifies two-tail test, "\(<\mu\)" specifies one-tail test where sample 1 is smaller than sample 2, "\(>\mu\)" specifies one-tail test where sample 1 is greater than sample 2.)
- **\(\sigma\)** population standard deviation of sample 1 (\(\sigma > 0\))
- **\(\sigma\)** population standard deviation of sample 2 (\(\sigma > 0\))
- **List1** list whose contents you want to use as sample 1 data
- **List2** list whose contents you want to use as sample 2 data
- **Freq1** frequency of sample 1
- **Freq2** frequency of sample 2
- **Execute** executes a calculation or draws a graph
The following shows the meaning of parameter data specification items that are different from list data specification.

- \bar{x}_1 sample 1 mean
- n_1 sample 1 size (positive integer)
- \bar{x}_2 sample 2 mean
- n_2 sample 2 size (positive integer)

Example To perform a 2-Sample Z Test when two lists of data are input

For this example, we will perform a $\mu_1 < \mu_2$ test for the data List1 = \{11.2, 10.9, 12.5, 11.3, 11.7\} and List2 = \{0.84, 0.9, 0.14, -0.75, -0.95\}, when $\sigma_1 = 15.5$ and $\sigma_2 = 13.5$.

Perform the following key operations to display a graph.
1-Prop Z Test

This test is used to test for an unknown proportion of successes. The 1-Prop Z Test is applied to the normal distribution.

\[Z = \frac{x - n \cdot p_0}{\sqrt{p_0(1-p_0)}} \]

\(p_0 \): expected sample proportion
\(n \): sample size

Perform the following key operations from the statistical data list.

F3 (TEST)
F1 (Z)
F3 (1-P)

Prop sample proportion test conditions ("\(p_0 \)" specifies two-tail test, "< \(p_0 \)" specifies lower one-tail test, "> \(p_0 \)" specifies upper one-tail test.)

\(p_0 \) expected sample proportion (0 < \(p_0 < 1 \))
\(x \) sample value (\(x \geq 0 \) integer)
\(n \) sample size (positive integer)

Execute executes a calculation or draws a graph

Example
To perform a 1-Prop Z Test for specific expected sample proportion, data value, and sample size

Perform the calculation using: \(p_0 = 0.5 \), \(x = 2048 \), \(n = 4040 \).

F1 (≠)
0 1 5 EXE
2 0 4 8 EXE
4 0 4 0 EXE
F1 (CALC)

Prop≠0.5 direction of test
\(z \) z value
\(p \) p-value
\(\hat{p} \) estimated sample proportion
\(n \) sample size
The following key operations can be used to draw a graph.

\[
Z = \frac{x_1 - x_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}
\]

- \(x_1\): sample 1 data value
- \(x_2\): sample 2 data value
- \(n_1\): sample 1 size
- \(n_2\): sample 2 size
- \(\hat{p}\): estimated sample proportion

2-Prop Z Test

This test is used to compare the proportion of successes. The 2-Prop Z Test is applied to the normal distribution.

Perform the following key operations from the statistical data list.

\[\text{F3 (TEST)}\]
\[\text{F1 (Z)}\]
\[\text{F4 (2-P)}\]

- \(p_1\) sample proportion test conditions (”\(\neq p_2\)” specifies two-tail test, “\(< p_2\)” specifies one-tail test where sample 1 is smaller than sample 2, “\(> p_2\)” specifies one-tail test where sample 1 is greater than sample 2.)
- \(x_1\) sample 1 data value (\(x_1 \geq 0\) integer)
- \(n_1\) sample 1 size (positive integer)
- \(x_2\) sample 2 data value (\(x_2 \geq 0\) integer)
- \(n_2\) sample 2 size (positive integer)

Example

To perform a \(p_1 > p_2\) 2-Prop Z Test for expected sample proportions, data values, and sample sizes

Perform a \(p_1 > p_2\) test using: \(x_1 = 225, n_1 = 300, x_2 = 230, n_2 = 300\).
The following key operations can be used to draw a graph.

EXIT

\[F_5(\text{DRAW}) \]

\(t \) Test

You can use the following menu to select a \(t \) test type.

- \{1-S\}/(2-S)/{REG} ... \{1-Sample\}/(2-Sample)/{LinearReg} \(t \) Test

1-Sample \(t \) Test

This test uses the hypothesis test for a single unknown population mean when the population standard deviation is unknown. The **1-Sample \(t \) Test** is applied to \(t \)-distribution.

\[
t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} \quad \bar{x} : \text{sample mean} \\
\mu_0 : \text{assumed population mean} \\
s : \text{sample standard deviation} \\
n : \text{sample size}
\]

Perform the following key operations from the statistical data list.

\[F_3(\text{TEST}) \]
\[F_2(t) \]
\[F_1(1-S) \]
The following shows the meaning of each item in the case of list data specification.

Data data type
\(\mu \) population mean value test conditions ("\(\neq \mu_0 \)" specifies two-tail test, "\(< \mu_0 \)" specifies lower one-tail test, "\(> \mu_0 \)" specifies upper one-tail test.)
\(\mu_0 \) assumed population mean
List list whose contents you want to use as data
Freq frequency
Execute executes a calculation or draws a graph

The following shows the meaning of parameter data specification items that are different from list data specification.

\(\bar{x} \) sample mean
\(x \sigma_n^{-1} \) sample standard deviation (\(x \sigma_n^{-1} > 0 \))
n sample size (positive integer)

Example
To perform a 1-Sample t Test for one list of data

For this example, we will perform a \(\mu \neq \mu_0 \) test for the data List1 = \{11.2, 10.9, 12.5, 11.3, 11.7\}, when \(\mu_0 = 11.3 \).

\[\begin{align*}
\bar{x} & = 11.52
x \sigma_n^{-1} & = 0.61306
n & = 5
\end{align*} \]

\(\mu \neq 11.3 \)............. assumed population mean and direction of test
\(t \) \(t \) value
\(p \) \(p \)-value
\(\bar{x} \) sample mean
\(x \sigma_n^{-1} \) sample standard deviation
n sample size

The following key operations can be used to draw a graph.

EXIT
\(\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \)
F6 (DRAW)
2-Sample t Test

2-Sample t Test compares the population means when the population standard deviations are unknown. The 2-Sample t Test is applied to \(t \)-distribution.

The following applies when pooling is in effect.

\[
t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{x_p\sigma_{n-1}^2}{n_1}} + \frac{x_p\sigma_{n-1}^2}{n_2}}
\]

\[
x_p\sigma_{n-1} = \sqrt{\frac{(n_1 - 1)x_1\sigma_{n-1}^2 + (n_2 - 1)x_2\sigma_{n-1}^2}{n_1 + n_2 - 2}}
\]

\[
df = n_1 + n_2 - 2
\]

The following applies when pooling is not in effect.

\[
t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{x_1\sigma_{n-1}^2}{n_1} + \frac{x_2\sigma_{n-1}^2}{n_2}}}
\]

\[
df = \frac{C^2 \left(\frac{1 - C}{n_1 - 1} \right) \left(\frac{1 - C}{n_2 - 1} \right)}{\frac{x_1\sigma_{n-1}^2}{n_1} + \frac{x_2\sigma_{n-1}^2}{n_2}}
\]

\[
C = \frac{\left(\frac{x_1\sigma_{n-1}^2}{n_1} \right) \left(\frac{x_2\sigma_{n-1}^2}{n_2} \right)}{\frac{x_1\sigma_{n-1}^2}{n_1} + \frac{x_2\sigma_{n-1}^2}{n_2}}
\]

Perform the following key operations from the statistical data list.

- \(F3(\text{TEST}) \)
- \(F2(\text{t}) \)
- \(F2(\text{2-S}) \)
The following shows the meaning of each item in the case of list data specification.

Data data type
μ1 sample mean value test conditions (“≠ μ2” specifies two-tail test, “< μ2” specifies one-tail test where sample 1 is smaller than sample 2, “> μ2” specifies one-tail test where sample 1 is greater than sample 2.)
List1 list whose contents you want to use as sample 1 data
List2 list whose contents you want to use as sample 2 data
Freq1 frequency of sample 1
Freq2 frequency of sample 2
Pooled pooling On or Off
Execute executes a calculation or draws a graph

The following shows the meaning of parameter data specification items that are different from list data specification.

\[\bar{x}_1, \bar{x}_1 \sigma_n^{-1}, n_1 \] sample 1 mean, standard deviation, size
\[\bar{x}_2, \bar{x}_2 \sigma_n^{-1}, n_2 \] sample 2 mean, standard deviation, size

Example
To perform a 2-Sample t Test when two lists of data are input
For this example, we will perform a \(\mu_1 \neq \mu_2 \) test for the data List1 = {55, 54, 51, 55, 53, 54, 53} and List2 = {55.5, 52.3, 51.8, 57.2, 56.5} when pooling is not in effect.

\[F_1 \text{ (List)} \downarrow F_1 (≠) \downarrow \]
\[F_1 \text{ (List1)} \downarrow F_2 \text{ (List2)} \downarrow \]
\[F_1 (1) \downarrow F_1 (1) \]
\[F_2 \text{ (Off)} \downarrow \]
\[F_1 \text{ (CALC)} \]

2-Sample t Test
\[t = -0.97041 \]
\[P = 0.37298 \]
\[df = 4.391 \]
\[\bar{x}_1 = 53.3143 \]
\[\bar{x}_2 = 54.68 \]

\[x_1 \sigma_{n1} = 1.3093 \]
\[x_2 \sigma_{n2} = 2.4643 \]
\[n_1 = 7 \]
\[n_2 = 5 \]
Perform the following key operations to display a graph.

The following item is also shown when Pooled = On.

The LinearReg t Test treats paired-variable data sets as \((x, y)\) pairs, and uses the method of least squares to determine the most appropriate \(a\), \(b\) coefficients of the data for the regression formula \(y = a + bx\). It also determines the correlation coefficient and \(t\) value, and calculates the extent of the relationship between \(x\) and \(y\).

\[
b = \frac{\sum_{i=1}^{n}(x - \bar{x})(y - \bar{y})}{\sum_{i=1}^{n}(x - \bar{x})^2} \quad a = \bar{y} - b\bar{x} \quad t = r \frac{\sqrt{n - 2}}{\sqrt{1 - r^2}}
\]

Perform the following key operations from the statistical data list.
The following shows the meaning of each item in the case of list data specification.

\[
\beta \& \rho \ldots \ldots \ldots \ldots \ldots \text{p-value test conditions ("\(\neq 0\)" specifies two-tail test, "\(< 0\)" specifies lower one-tail test, "\(> 0\)" specifies upper one-tail test.)}
\]

XList list for \(x\)-axis data
YList list for \(y\)-axis data
Freq frequency
Execute executes a calculation

Example

To perform a LinearReg \(t\) Test when two lists of data are input

For this example, we will perform a LinearReg \(t\) Test for \(x\)-axis data \{0.5, 1.2, 2.4, 4, 5.2\} and \(y\)-axis data \{-2.1, 0.3, 1.5, 5, 2.4\}.

\[
\begin{align*}
\text{F1}(\neq) & \\
\text{F1} & (\text{List1}) \\
\text{F2} & (\text{List2}) \\
\text{F1}(1) & \\
\text{F1} & (\text{CALC})
\end{align*}
\]

\[
\begin{align*}
\begin{array}{|l|c|}
\hline
\text{LinearReg } t\text{ Test} & \\
\beta \neq 0 & \rho \neq 0 \\
t & = 2.3979 \\
p & = 0.096652 \\
df & = 3 \\
a & = -1.485 \\
b & = 1.0921 \\
y & = a + bx
\end{array}
\end{align*}
\]

\[
\begin{align*}
\alpha & = 1.7764 \\
r & = 0.81064 \\
r^2 & = 0.65714
\end{align*}
\]

\[
\begin{align*}
\beta \neq 0 & \& \rho \neq 0 \ldots \ldots \ldots \text{direction of test} \\
t & \ldots \ldots \ldots \text{t value} \\
p & \ldots \ldots \ldots \text{p-value} \\
df & \ldots \ldots \ldots \text{degrees of freedom} \\
a & \ldots \ldots \ldots \text{constant term} \\
b & \ldots \ldots \ldots \text{coefficient} \\
s & \ldots \ldots \ldots \text{standard error} \\
r & \ldots \ldots \ldots \text{correlation coefficient} \\
r^2 & \ldots \ldots \ldots \text{coefficient of determination}
\end{align*}
\]

The following key operations can be used to copy the regression formula.

\[
\text{F6} \text{(COPY)}
\]
Other Tests

• χ^2 Test

χ^2 Test sets up a number of independent groups and tests hypotheses related to the proportion of the sample included in each group. The χ^2 Test is applied to dichotomous variables (variable with two possible values, such as yes/no).

expected counts

$$F_{ij} = \frac{\sum_{i=1}^{k} x_{ij} \times \sum_{j=1}^{l} x_{ij}}{\sum_{i=1}^{k} \sum_{j=1}^{l} x_{ij}}$$

$$\chi^2 = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(x_{ij} - F_{ij})^2}{F_{ij}}$$

For the above, data must already be input in a matrix using the MAT Mode.

Perform the following key operations from the statistical data list.

F3 (TEST)
F3 (CHI)

Next, specify the matrix that contains the data. The following shows the meaning of the above item.

Observed name of matrix (A to Z) that contains observed counts (all cells positive integers)
Execute executes a calculation or draws a graph

The matrix must be at least two lines by two columns. An error occurs if the matrix has only one line or one column.

Example To perform a χ^2 Test on a specific matrix cell

For this example, we will perform a χ^2 Test for Mat A, which contains the following data.

Mat A =

\[
\begin{bmatrix}
1 & 4 \\
5 & 10
\end{bmatrix}
\]

F1 (Mat A) ☑
F3 (CALC)
χ^2 χ^2 value
p p-value
df degrees of freedom
Expected expected counts (Result is always stored in MatAns.)

The following key operations can be used to display the graph.

![Graph with values]

2-Sample F Test

2-Sample F Test tests the hypothesis that when a sample result is composed of multiple factors, the population result will be unchanged when one or some of the factors are removed. The F Test is applied to the F distribution.

$$F = \frac{x_1\sigma_{n-1}^-}{x_2\sigma_{n-1}^+}$$

Perform the following key operations from the statistical data list.

![Statistical data list]

The following is the meaning of each item in the case of list data specification.

- **Data** data type
- σ_1 population standard deviation test conditions ("$\div \sigma_1$" specifies two-tail test, "< σ_1" specifies one-tail test where sample 1 is smaller than sample 2, "> σ_1" specifies one-tail test where sample 1 is greater than sample 2.)
- **List1** list whose contents you want to use as sample 1 data
- **List2** list whose contents you want to use as sample 2 data
- **Freq1** frequency of sample 1
- **Freq2** frequency of sample 2
- Execute executes a calculation or draws a graph
The following shows the meaning of parameter data specification items that are different from list data specification.

\[x_1 \sigma_{n-1} \quad \text{sample 1 standard deviation} \quad (x_1 \sigma_{n-1} > 0) \]
\[n_1 \quad \text{sample 1 size (positive integer)} \]
\[x_2 \sigma_{n-1} \quad \text{sample 2 standard deviation} \quad (x_2 \sigma_{n-1} > 0) \]
\[n_2 \quad \text{sample 2 size (positive integer)} \]

Example

To perform a 2-Sample \(F \) Test when two lists of data are input

For this example, we will perform a 2-Sample \(F \) Test for the data \(\text{List1} = \{0.5, 1.2, 2.4, 4, 5.2\} \) and \(\text{List2} = \{-2.1, 0.3, 1.5, 5, 2.4\} \).

```
\( \sigma_1 \neq \sigma_2 \quad \text{direction of test} \)
\( F \quad \text{F value} \)
\( p \quad \text{p-value} \)
\( x_1 \sigma_{n-1} \quad \text{sample 1 standard deviation} \)
\( x_2 \sigma_{n-1} \quad \text{sample 2 standard deviation} \)
\( x_1 \quad \text{sample 1 mean} \)
\( x_2 \quad \text{sample 2 mean} \)
\( n_1 \quad \text{sample 1 size} \)
\( n_2 \quad \text{sample 2 size} \)
```

Perform the following key operations to display a graph.

```
F1 (List) \( \triangleright \) F1 (\( \pm \)) \( \triangleright \)
F1 (List1) \( \triangleright \) F2 (List2) \( \triangleright \)
F1 (1) \( \triangleright \) F1 (1) \( \triangleright \)
F1 (CALC)
```

```
2-Sample FTest
\( \sigma_1 \neq \sigma_2 \)
\( F \quad 0.550996 \)
\( p \quad 0.57785 \)
\( x_1 \sigma_{n-1} \quad 1.9437 \)
\( x_2 \sigma_{n-1} \quad 2.8185 \)
\( x_1 \quad 2.88 \)
\( x_2 \quad 1.42 \)
\( n_1 \quad 5 \)
\( n_2 \quad 5 \)
```

Perform the following key operations to display a graph.

EXIT
\(\uparrow \) \(\uparrow \)
F6 (DRAW)
Analysis of Variance (ANOVA)

ANOVA tests the hypothesis that when there are multiple samples, the means of the populations of the samples are all equal.

\[
F = \frac{MS}{MSe} \quad k \quad : \text{number of populations}
\]

\[
MS = \frac{SS}{F\text{df}} \quad \bar{x}_i \quad : \text{mean of each list}
\]

\[
MSe = \frac{SSe}{E\text{df}} \quad \sigma_{i-1} \quad : \text{standard deviation of each list}
\]

\[
SS = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x})^2 \quad n_i \quad : \text{size of each list}
\]

\[
SSe = \sum_{i=1}^{k} (n_i - 1)\sigma_{i-1}^2 \quad \bar{x} \quad : \text{mean of all lists}
\]

\[
F = \frac{F\text{df}}{E\text{df}} \quad F \quad : F \text{ value}
\]

\[
MS \quad : \text{factor mean squares}
\]

\[
MSe \quad : \text{error mean squares}
\]

\[
SS \quad : \text{factor sum of squares}
\]

\[
SSe \quad : \text{error sum of squares}
\]

\[
F\text{df} \quad : \text{factor degrees of freedom}
\]

\[
E\text{df} \quad : \text{error degrees of freedom}
\]

Perform the following key operations from the statistical data list.

- **F3** (TEST)
- **F6** (ANOV)

The following is the meaning of each item in the case of list data specification.

- **How Many** number of samples
- **List1** list whose contents you want to use as sample 1 data
- **List2** list whose contents you want to use as sample 2 data
- **Execute** executes a calculation

A value from 2 through 6 can be specified in the How Many line, so up to six samples can be used.

Example

To perform one-way ANOVA (analysis of variance) when three lists of data are input

For this example, we will perform analysis of variance for the data List1 = \{6, 7, 8, 6, 7\}, List2 = \{0, 3, 4, 3, 5, 4, 7\} and List3 = \{4, 5, 4, 6, 6, 7\}.

292
\[F \text{ value} \]
\[p \text{ value} \]
\[x_p \sigma^2 \]
\[F_{df} \text{ degrees of freedom} \]
\[SS \text{ sum of squares} \]
\[MS \text{ mean squares} \]
\[Edf \text{ error degrees of freedom} \]
\[SSe \text{ error sum of squares} \]
\[MS_e \text{ error mean squares} \]
A confidence interval is a range (interval) that includes a statistical value, usually the population mean.

A confidence interval that is too broad makes it difficult to get an idea of where the population value (true value) is located. A narrow confidence interval, on the other hand, limits the population value and makes it difficult to obtain reliable results. The most commonly used confidence levels are 95% and 99%. Raising the confidence level broadens the confidence interval, while lowering the confidence level narrows the confidence level, but it also increases the chance of accidently overlooking the population value. With a 95% confidence interval, for example, the population value is not included within the resulting intervals 5% of the time.

When you plan to conduct a survey and then \(t \) test and \(Z \) test the data, you must also consider the sample size, confidence interval width, and confidence level. The confidence level changes in accordance with the application.

1-Sample \(Z \) Interval calculates the confidence interval when the population standard deviation is known.

2-Sample \(Z \) Interval calculates the confidence interval when the population standard deviations of two samples are known.

1-Prop \(Z \) Interval calculates the confidence interval when the proportion is not known.

2-Prop \(Z \) Interval calculates the confidence interval when the proportions of two samples are not known.

1-Sample \(t \) Interval calculates the confidence interval for an unknown population mean when the population standard deviation is unknown.

2-Sample \(t \) Interval calculates the confidence interval for the difference between two population means when both population standard deviations are unknown.

While the statistical data list is on the display, press \(\text{F4} \) \((\text{INTR})\) to display the confidence interval menu, which contains the following items.

- \(\{Z\}/\{t\} \) ... \(\{Z\}/\{t\} \) confidence interval calculation

About data type specification

For some types of confidence interval calculation you can select data type using the following menu.

- \(\{\text{List}\}/\{\text{Var}\} \) ... specifies \(\{\text{List data}\}/\{\text{parameter data}\} \)
Z Confidence Interval

You can use the following menu to select from the different types of Z confidence interval.

- \((1-S)/(2-S)/(1-P)/(2-P) \) ... \((1\text{-Sample})/(2\text{-Sample})/(1\text{-Prop})/(2\text{-Prop}) \) Z Interval

1-Sample Z Interval

1-Sample Z Interval calculates the confidence interval for an unknown population mean when the population standard deviation is known.

The following is the confidence interval.

\[
Left = \bar{x} - Z\left(\frac{\alpha}{2}\right) \frac{\sigma}{\sqrt{n}}
\]

\[
Right = \bar{x} + Z\left(\frac{\alpha}{2}\right) \frac{\sigma}{\sqrt{n}}
\]

However, \(\alpha \) is the level of significance. The value 100 \((1 - \alpha) \)% is the confidence level.

When the confidence level is 95%, for example, inputting 0.95 produces \(1 - 0.95 = 0.05 = \alpha \).

Perform the following key operations from the statistical data list.

- **F4** (INTR)
- **F1** (Z)
- **F1** (1-S)

The following shows the meaning of each item in the case of list data specification.

- **Data** data type
- **C-Level** confidence level \((0 \leq \text{C-Level} < 1) \)
- **\(\sigma \)** population standard deviation \((\sigma > 0) \)
- **List** list whose contents you want to use as sample data
- **Freq** sample frequency
- **Execute** executes a calculation

The following shows the meaning of parameter data specification items that are different from list data specification.

\[
\bar{x} \quad \text{sample mean}
\]

\[
n \quad \text{sample size (positive integer)}
\]
Example To calculate the 1-Sample Z Interval for one list of data

For this example, we will obtain the Z Interval for the data {11.2, 10.9, 12.5, 11.3, 11.7}, when C-Level = 0.95 (95% confidence level) and $\sigma = 3$.

Left interval lower limit (left edge)
Right interval upper limit (right edge)
\bar{x} sample mean
$x_{10} \ldots \ldots$ sample standard deviation
n sample size

2-Sample Z Interval

2-Sample Z Interval calculates the confidence interval for the difference between two population means when the population standard deviations of two samples are known.

The following is the confidence interval. The value 100 $(1 - \alpha)$ % is the confidence level.

\[
Left = (\bar{x}_1 - \bar{x}_2) - Z\left(\frac{\alpha}{2}\right) \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}
\]

\[
Right = (\bar{x}_1 - \bar{x}_2) + Z\left(\frac{\alpha}{2}\right) \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}
\]

x_1 : sample 1 mean
x_2 : sample 2 mean
σ_1 : population standard deviation of sample 1
σ_2 : population standard deviation of sample 2
n_1 : sample 1 size
n_2 : sample 2 size

Perform the following key operations from the statistical data list.

The following shows the meaning of each item in the case of list data specification.

Data data type
C-Level confidence level ($0 \leq C\text{-Level} < 1$)
σ₁ population standard deviation of sample 1 (σ₁ > 0)
σ₂ population standard deviation of sample 2 (σ₂ > 0)
List1 list whose contents you want to use as sample 1 data
List2 list whose contents you want to use as sample 2 data
Freq1 frequency of sample 1
Freq2 frequency of sample 2
Execute executes a calculation

The following shows the meaning of parameter data specification items that are different from list data specification.

Example To calculate the 2-Sample Z Interval when two lists of data are input

For this example, we will obtain the 2-Sample Z Interval for the data 1 = {55, 54, 51, 55, 53, 54, 53} and data 2 = {55.5, 52.3, 51.8, 57.2, 56.5} when C-Level = 0.95 (95% confidence level), σ₁ = 15.5, and σ₂ = 13.5.

Left interval lower limit (left edge)
Right interval upper limit (right edge)
\bar{x}_1 sample 1 mean
\bar{x}_2 sample 2 mean
\frac{x_1}{\sigma_n^{-1}} sample 1 standard deviation
\frac{x_2}{\sigma_n^{-1}} sample 2 standard deviation
n₁ sample 1 size
n₂ sample 2 size
1-Prop Z Interval uses the number of data to calculate the confidence interval for an unknown proportion of successes.

The following is the confidence interval. The value 100 \((1 - \alpha)\) \% is the confidence level.

\[
\begin{align*}
Left &= \frac{x}{n} - Z \left(\frac{\alpha}{2} \right) \sqrt{\frac{1}{n} \left(\frac{x}{n} \left(1 - \frac{x}{n} \right) \right)} \\
Right &= \frac{x}{n} + Z \left(\frac{\alpha}{2} \right) \sqrt{\frac{1}{n} \left(\frac{x}{n} \left(1 - \frac{x}{n} \right) \right)}
\end{align*}
\]

Perform the following key operations from the statistical data list.

\[
\begin{align*}
F4\text{(INTR)} & \quad 1\text{-Prop ZInterval} \\
F1\text{(Z)} & \quad \text{C-Level} = 0.99 \\
F3\text{(1-P)} & \quad x = 55, n = 100
\end{align*}
\]

Data is specified using parameter specification. The following shows the meaning of each item.

- C-Level confidence level \((0 \leq \text{C-Level} < 1)\)
- \(x\) data \((0 \text{ or positive integer)}\)
- \(n\) sample size \((\text{positive integer)}\)
- Execute executes a calculation

Example
To calculate the 1-Prop Z Interval using parameter value specification

For this example, we will obtain the 1-Prop Z Interval when C-Level = 0.99, \(x = 55\), and \(n = 100\).

\[
\begin{align*}
0 & \quad 9 \quad 9 \quad \text{EX} \\
5 & \quad 5 \quad \text{EX} \\
1 & \quad 0 \quad 0 \quad \text{EX} \\
F1\text{(CALC)}
\end{align*}
\]

\[
\begin{align*}
\text{Left} &= 0.42185 \\
\text{Right} &= 0.67814 \\
\hat{p} &= 0.55 \\
n &= 100
\end{align*}
\]

- Left interval lower limit (left edge)
- Right interval upper limit (right edge)
- \(\hat{p}\) estimated sample proportion
- \(n\) sample size
2-Prop Z Interval

The following is the confidence interval. The value 100 \((1 - \alpha) \) \% is the confidence level.

\[
\begin{align*}
Left &= \frac{x_1}{n_1} - \frac{x_2}{n_2} - Z \left(\frac{\alpha}{2} \right) \sqrt{\frac{x_1(1-x_1)}{n_1} + \frac{x_2(1-x_2)}{n_2}} \\
Right &= \frac{x_1}{n_1} - \frac{x_2}{n_2} + Z \left(\frac{\alpha}{2} \right) \sqrt{\frac{x_1(1-x_1)}{n_1} + \frac{x_2(1-x_2)}{n_2}}
\end{align*}
\]

Where:
- \(n_1, n_2 \): sample size
- \(x_1, x_2 \): data

Perform the following key operations from the statistical data list.

- \(\text{F4 (INTR)} \)
- \(\text{F1 (Z)} \)
- \(\text{F4 (2-P)} \)

Data is specified using parameter specification. The following shows the meaning of each item.

- C-Level: confidence level (0 \(\leq \) C-Level < 1)
- \(x_1 \): sample 1 data value (\(x_1 \geq 0 \))
- \(n_1 \): sample 1 size (positive integer)
- \(x_2 \): sample 2 data value (\(x_2 \geq 0 \))
- \(n_2 \): sample 2 size (positive integer)

Example

To calculate the 2-Prop Z Interval using parameter value specification

For this example, we will obtain the 2-Prop Z Interval when

- C-Level = 0.95,
- \(x_1 = 49 \), \(n_1 = 61 \),
- \(x_2 = 38 \)
- \(n_2 = 62 \).

\[
\begin{align*}
\text{F1 (CALC)}
\end{align*}
\]

Left: interval lower limit (left edge)

Right: interval upper limit (right edge)
\[\hat{p}_1 \] estimated sample proportion for sample 1
\[\hat{p}_2 \] estimated sample proportion for sample 2
\[n_1 \] sample 1 size
\[n_2 \] sample 2 size

18-7 Confidence Interval

You can use the following menu to select from two types of \(t \) confidence interval.

- \{1-S\}/(2-S) \(\rightarrow \) \{1-Sample\}/(2-Sample) \(t \) Interval

1-Sample \(t \) Interval

1-Sample \(t \) Interval calculates the confidence interval for an unknown population mean when the population standard deviation is unknown.

The following is the confidence interval. The value 100 \((1 - \alpha) \% \) is the confidence level.

\[
\text{Left} = \bar{x} - t_{n-1} \left(\frac{\alpha}{2} \right) \frac{x \sigma_{n-1}}{\sqrt{n}}
\]

\[
\text{Right} = \bar{x} + t_{n-1} \left(\frac{\alpha}{2} \right) \frac{x \sigma_{n-1}}{\sqrt{n}}
\]

Perform the following key operations from the statistical data list.

1. **F4** (INTR)
2. **F2** (t)
3. **F1** (1-S)

The following shows the meaning of each item in the case of list data specification.

- **Data** data type
- **C-Level** confidence level \((0 \leq C-Level < 1) \)
- **List** list whose contents you want to use as sample data
- **Freq** sample frequency
- **Execute** execute a calculation

The following shows the meaning of parameter data specification items that are different from list data specification.

\[
\bar{x} \quad : \text{sample mean}
\]

\[
x \sigma_{n-1} \quad : \text{sample standard deviation} \quad (x \sigma_{n-1} \geq 0)
\]

\[
n \quad : \text{sample size (positive integer)}
\]
Example

To calculate the 1-Sample t Interval for one list of data

For this example, we will obtain the 1-Sample t Interval for data $= \{11.2, 10.9, 12.5, 11.3, 11.7\}$ when C-Level = 0.95.

F1 (List)	*/ *	0	9	5	6
F1 (List1)	*/ *				
F1 (1)	*/ *				
F1 (CALC)	*/ *				

1 -Sample tInterval

Left $= \bar{x} - t_{n-1} \frac{\sigma_{n-1}}{\sqrt{n}}$

Right $= \bar{x} + t_{n-1} \frac{\sigma_{n-1}}{\sqrt{n}}$

\bar{x} sample mean

σ_{n-1} sample standard deviation

n sample size

$\sigma = \sqrt{\frac{(n_1-1)\sigma_{1}^2 + (n_2-1)\sigma_{2}^2}{n_1 + n_2 - 2}}$

2-Sample t Interval

2-Sample t Interval calculates the confidence interval for the difference between two population means when both population standard deviations are unknown. The t interval is applied to t distribution.

The following confidence interval applies when pooling is in effect. The value 100 $(1 - \alpha)$ % is the confidence level.

$Left = (\bar{x}_1 - \bar{x}_2) - t_{n_1 + n_2 - 2} \left(\frac{\alpha}{2} \right) \sqrt{\frac{\sigma_{n-1}^2}{n_1} + \frac{1}{n_2}}$

$Right = (\bar{x}_1 - \bar{x}_2) + t_{n_1 + n_2 - 2} \left(\frac{\alpha}{2} \right) \sqrt{\frac{\sigma_{n-1}^2}{n_1} + \frac{1}{n_2}}$

The following confidence interval applies when pooling is not in effect. The value 100 $(1 - \alpha)$ % is the confidence level.

$df = \frac{1}{C^2} \left(\frac{1 - C}{n_1 - 1} + \frac{1}{n_2 - 1} \right)$

$C = \frac{x_1 \sigma_{n-1}^2}{\left(\frac{n_1}{n_1} + \frac{n_2}{n_2} \right)}$
Perform the following key operations from the statistical data list.

- **F4** (INTR)
- **F2** (t)
- **F2** (2-S)

The following shows the meaning of each item in the case of list data specification.

- **Data** data type
- **C-Level** confidence level (0 ≤ C-Level < 1)
- **List1** list whose contents you want to use as sample 1 data
- **List2** list whose contents you want to use as sample 2 data
- **Freq1** frequency of sample 1
- **Freq2** frequency of sample 2
- **Pooled** pooling On or Off
- **Execute** executes a calculation

The following shows the meaning of parameter data specification items that are different from list data specification.

\[
\begin{align*}
\bar{x}_1 & : 0 \\
\bar{x}_1 \sigma_{n-1} & : 0 \\
n_1 & : 0 \\
\bar{x}_2 & : 0 \\
\bar{x}_2 \sigma_{n-1} & : 0 \\
n_2 & : 0 \\
\end{align*}
\]

- \(\bar{x}_1\) sample 1 mean
- \(\bar{x}_1 \sigma_{n-1}\) sample 1 standard deviation (\(\bar{x}_1 \sigma_{n-1} \geq 0\))
- \(n_1\) sample 1 size (positive integer)
- \(\bar{x}_2\) sample 2 mean
- \(\bar{x}_2 \sigma_{n-1}\) sample 2 standard deviation (\(\bar{x}_2 \sigma_{n-1} \geq 0\))
- \(n_2\) sample 2 size (positive integer)
Example

To calculate the 2-Sample t Interval when two lists of data are input

For this example, we will obtain the 2-Sample t Interval for data 1 = \{55, 54, 51, 55, 53, 54, 53\} and data 2 = \{55.5, 52.3, 51.8, 57.2, 56.5\} without pooling when C-Level = 0.95.

<table>
<thead>
<tr>
<th>2-Sample tInterval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left = 4.1576</td>
</tr>
<tr>
<td>Right = 1.8376</td>
</tr>
<tr>
<td>df = 5.4391</td>
</tr>
<tr>
<td>(\bar{x}_1) = 53.5</td>
</tr>
<tr>
<td>(\bar{x}_2) = 54.56</td>
</tr>
<tr>
<td>(x_1 \sigma_{n-1}) = 1.3893</td>
</tr>
</tbody>
</table>

Left interval lower limit (left edge)
Right interval upper limit (right edge)
df degrees of freedom
\(\bar{x}_1 \) sample 1 mean
\(\bar{x}_2 \) sample 2 mean
\(x_1 \sigma_{n-1} \) sample 1 standard deviation
\(x_2 \sigma_{n-1} \) sample 2 standard deviation
\(n_1 \) sample 1 size
\(n_2 \) sample 2 size

The following item is also shown when Pooled = On.

\(x_\sigma \sigma_{n-1} = 1.8163 \)

\(x_\sigma \sigma_{n-1} \) pooled sample standard deviation
There is a variety of different types of distribution, but the most well-known is "normal distribution," which is essential for performing statistical calculations. Normal distribution is a symmetrical distribution centered on the greatest occurrences of mean data (highest frequency), with the frequency decreasing as you move away from the center. Poisson distribution, geometric distribution, and various other distribution shapes are also used, depending on the data type.

Certain trends can be determined once the distribution shape is determined. You can calculate the probability of data taken from a distribution being less than a specific value.

For example, distribution can be used to calculate the yield rate when manufacturing some product. Once a value is established as the criteria, you can calculate normal probability density when estimating what percent of the products meet the criteria. Conversely, a success rate target (80% for example) is set up as the hypothesis, and normal distribution is used to estimate the proportion of the products will reach this value.

Normal probability density calculates the probability density of normal distribution from a specified \(x \) value.

Normal distribution probability calculates the probability of normal distribution data falling between two specific values.

Inverse cumulative normal distribution calculates a value that represents the location within a normal distribution for a specific cumulative probability.

Student- \(t \) probability density calculates \(t \) probability density from a specified \(x \) value.

Student- \(t \) distribution probability calculates the probability of \(t \) distribution data falling between two specific values.

Like \(t \) distribution, distribution probability can also be calculated for chi-square, \(F \), binomial, Poisson, and geometric distributions.

While the statistical data list is on the display, press \(\text{F5} \) (DIST) to display the distribution menu, which contains the following items.

- \{NORM\}/\{t\}/\{CHI\}/\{F\}/\{BINM\}/\{POISN\}/\{GEO\} ... \{normal\}/\{t\}/\{\chi^2\}/\{F\}/\{binomial\}/\{Poisson\}/\{geometric\} distribution

About data type specification

For some types of distribution you can select data type using the following menu.

- \{List\}/\{Var\} ... specifies \{list data\}/\{parameter data\}
Normal Distribution

You can use the following menu to select from the different types of calculation.

- \(\text{Normal probability density}/\text{Normal distribution probability}/\text{Inverse cumulative normal distribution}\) calculation

Normal probability density

Normal probability density calculates the probability density of normal distribution from a specified \(x\) value. Normal probability density is applied to the standard normal distribution.

\[
f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad (\sigma > 0)
\]

Perform the following key operations from the statistical data list.

- \(\text{F5 (DIST)}\)
- \(\text{F1 (NORM)}\)
- \(\text{F1 (Npd)}\)

Data is specified using parameter specification. The following shows the meaning of each item.

- \(x\) data
- \(\sigma\) standard deviation \((\sigma > 0)\)
- \(\mu\) mean
- Execute executes a calculation or draws a graph

Example

To calculate the normal probability density for a specific parameter value

For this example, we will calculate the normal probability density when \(x = 36\), \(\sigma = 2\) and \(\mu = 35\).

\[
p(x) = 0.17603
\]

\(p(x)\) normal probability density
Perform the following key operations to display a graph.

\[\text{EXIT} \]
\[\text{F6 (DRAW)} \]

Normal distribution probability

Normal distribution probability calculates the probability of normal distribution data falling between two specific values.

\[p = \frac{1}{\sqrt{2\pi}\sigma} \int_a^b e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx \]

\[a : \text{lower boundary} \quad b : \text{upper boundary} \]

Perform the following key operations from the statistical data list.

\[\text{F5 (DIST)} \] \[\text{F1 (NORM)} \] \[\text{F2 (Ncd)} \]

Data is specified using parameter specification. The following shows the meaning of each item.

- Lower lower boundary
- Upper upper boundary
- \(\sigma \) standard deviation (\(\sigma > 0 \))
- \(\mu \) mean

Execute executes a calculation

Example

To calculate the normal distribution probability for a specific parameter value

For this example, we will calculate the normal distribution probability when lower boundary = \(-\infty (-1E99)\), upper boundary = 36, \(\sigma = 2 \) and \(\mu = 35 \).

\[\text{\rightarrow 1 EXP 9 9 EXE} \]
\[3 6 \text{ EXE} \]
\[2 \text{ EXE} \]
\[3 5 \text{ EXE} \]
\[\text{F1 (CALC)} \]

\[\text{Normal C.D} \]
\[\text{Prob}=0.69146 \]

\[\text{prob normal distribution probability} \]
• This calculator performs the above calculation using the following:

\[\infty = 1E99, \: -\infty = -1E99 \]

Inverse cumulative normal distribution

Inverse cumulative normal distribution calculates a value that represents the location within a normal distribution for a specific cumulative probability.

\[
\int_{-\infty}^{\alpha} f(x)dx = p
\]

Upper boundary of integration interval

\[\alpha = ? \]

Specify the probability and use this formula to obtain the integration interval.

Perform the following key operations from the statistical data list.

- [F5] (DIST)
- [F1] (NORM)
- [F3] (InvN)

Data is specified using parameter specification. The following shows the meaning of each item.

- **Area** probability value (0 ≤ Area ≤ 1)
- **σ** standard deviation (σ > 0)
- **µ** mean
- **Execute** executes a calculation

Example

To calculate inverse cumulative normal distribution for a specific parameter value

For this example, we will determine inverse cumulative normal distribution when probability value = 0.691462, σ = 2 and µ = 35.

\[x \] inverse cumulative normal distribution (upper boundary of integration interval)
■ Student-\(t\) Distribution

You can use the following menu to select from the different types of Student-\(t\) distribution.

- \{tpd\}/\{tcd\} ... \{Student-\(t\) probability density\}/\{Student-\(t\) distribution probability\} calculation

\(\text{Student-}\(t\) probability density}

Student-\(t\) probability density calculates \(t\) probability density from a specified \(x\) value.

\[
f(x) = \Gamma\left(\frac{df+1}{2}\right) \sqrt{\frac{df}{\pi}} \left(1 + \frac{x^2}{df}\right)^{-\frac{df+1}{2}}
\]

Perform the following key operations from the statistical data list.

- F5 (DIST)
- F2 (t)
- F1 (tpd)

Data is specified using parameter specification. The following shows the meaning of each item.

- \(x\) data
- \(df\) degrees of freedom \((df > 0)\)

Execute executes a calculation or draws a graph

Example

To calculate Student-\(t\) probability density for a specific parameter value

For this example, we will calculate Student-\(t\) probability density when \(x = 1\) and degrees of freedom = 2.

\[
p(x) = 0.19245
\]
Perform the following key operation to display a graph.

EXIT

DRAW

• **Student-\(t \) distribution probability**

Student-\(t \) distribution probability calculates the probability of \(t \) distribution data falling between two specific values.

\[
p = \frac{\Gamma\left(\frac{df + 1}{2}\right)}{\Gamma\left(\frac{df}{2}\right)\sqrt{\pi df}} \int_{a}^{b} \left(1 + \frac{x^2}{df}\right)^{-\frac{df+1}{2}} dx
\]

\(a \): lower boundary
\(b \): upper boundary

Perform the following key operations from the statistical data list.

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5 (DIST)</td>
<td></td>
</tr>
<tr>
<td>F2 (t)</td>
<td></td>
</tr>
<tr>
<td>F2 (tcd)</td>
<td></td>
</tr>
</tbody>
</table>

Data is specified using parameter specification. The following shows the meaning of each item.

- **Lower** lower boundary
- **Upper** upper boundary
- **df** degrees of freedom (df > 0)
- **Execute** executes a calculation

Example

To calculate Student-\(t \) distribution probability for a specific parameter value

For this example, we will calculate Student-\(t \) distribution probability when lower boundary = \(-2\), upper boundary = \(3\), and degrees of freedom = 18.

\[
\begin{array}{c}
\text{F5 (DIST)} \\
\text{F2 (t)} \\
\text{F2 (tcd)} \\
\hline
\text{Student-}t \text{C.D} \\
\text{Lower} : -2 \\
\text{Upper} : 3 \\
\text{df} : 18 \\
\text{Execute} \\
\text{prob} : 0.96574
\end{array}
\]

\(\text{prob} \): Student-\(t \) distribution probability
Chi-square Distribution

You can use the following menu to select from the different types of chi-square distribution.

- \(\text{(Cpd)}/\text{(Ccd)} \) ... \(\chi^2 \) probability density)/\(\chi^2 \) distribution probability calculation

\(\chi^2 \) probability density

\(\chi^2 \) probability density calculates the probability density function for the \(\chi^2 \) distribution at a specified \(x \) value.

\[
f(x) = \frac{1}{\Gamma(\frac{df}{2})} \left(\frac{df}{2} \right)^{\frac{df}{2} - 1} x^{\frac{df}{2} - 1} e^{-\frac{x}{2}} \quad (x \geq 0)
\]

Perform the following key operations from the statistical data list.

- \(\text{F5 (DIST)} \)
- \(\text{F3 (CHI)} \)
- \(\text{F1 (Cpd)} \)

Data is specified using parameter specification. The following shows the meaning of each item.

\(x \) data
\(df \) degrees of freedom (positive integer)
Execute executes a calculation or draws a graph

Example

To calculate \(\chi^2 \) probability density for a specific parameter value

For this example, we will calculate \(\chi^2 \) probability density when \(x = 1 \) and degrees of freedom = 3.

\[
p(x) \quad \chi^2 \text{ probability density}
\]
Perform the following key operations to display a graph.

\[p = \frac{1}{\Gamma\left(\frac{df}{2}\right)} \int_{a}^{b} x^{df/2-1} e^{-x/2} dx \]

\(a \): lower boundary
\(b \): upper boundary

\(\Gamma \)

\(df \)

\(\chi^2 \) distribution probability

\(\chi^2 \) distribution probability calculates the probability of \(\chi^2 \) distribution data falling between two specific values.

Perform the following key operations from the statistical data list.

Example To calculate \(\chi^2 \) distribution probability for a specific parameter value

For this example, we will calculate \(\chi^2 \) distribution probability when lower boundary = 0, upper boundary = 19.023, and degrees of freedom = 9.
F Distribution

You can use the following menu to select from the different types of F distribution.

- $\{F_{pd}\}/\{F_{cd}\}$... $\{F$ probability density$/F$ distribution probability$\)$ calculation

F probability density

F probability density calculates the probability density function for the F distribution at a specified x value.

$$f(x) = \frac{\Gamma\left(\frac{n + d}{2}\right)}{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{d}{2}\right)} \left(\frac{n}{d}\right)^{\frac{n}{2} - 1} x^{\frac{n}{2} - 1} \left(1 + \frac{nx}{d}\right)^{-\frac{n + d}{2}} \quad (x \geq 0)$$

Perform the following key operations from the statistical data list.

- F5 (DIST)
- F4 (F)
- F1 (Fpd)

Data is specified using parameter specification. The following shows the meaning of each item.

- x data
- n-df numerator degrees of freedom (positive integer)
- d-df denominator degrees of freedom (positive integer)

Execute executes a calculation or draws a graph

Example

To calculate F probability density for a specific parameter value

For this example, we will calculate F probability density when $x = 1$, n-df = 24, and d-df = 19.

```
1 \text{ EX}
2 \text{ 4 EX}
1 \text{ 9 EX}
F1 (CALC)
```

$p(x)$ F probability density

Perform the following key operations to display a graph.

```
\text{EXIT}
\text{h v h v}
F6 (DRAW)
```
F distribution probability

F distribution probability calculates the probability of F distribution data falling between two specific values.

\[
p = \frac{\Gamma\left(\frac{n + d}{2}\right)}{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{d}{2}\right)} \int_{a}^{b} \left(1 + \frac{nx}{d}\right)^{-\frac{n + d}{2}} dx\]

$a : \text{lower boundary} \quad b : \text{upper boundary}$

Perform the following key operations from the statistical data list.

- \(F_5\) (DIST)
- \(F_4\) (F)
- \(F_2\) (Fcd)

Data is specified using parameter specification. The following shows the meaning of each item.

- Lower lower boundary
- Upper upper boundary
- \(n\)-\(df\) numerator degrees of freedom (positive integer)
- \(d\)-\(df\) denominator degrees of freedom (positive integer)
- Execute executes a calculation

Example
To calculate F distribution probability for a specific parameter value

For this example, we will calculate F distribution probability when lower boundary = 0, upper boundary = 1.9824, \(n\)-\(df\) = 19 and \(d\)-\(df\) = 16.

\[
\begin{align*}
\text{F C.D} & \quad \text{Prob=0.914} \\
\text{Lower: } & 0 \\
\text{Upper: } & 1.9824 \\
\text{n\text{-}df: } & 19 \\
\text{d\text{-}df: } & 16 \\
\text{Execute} & \\
\text{prob: } & F\text{ distribution probability}
\end{align*}
\]

Binomial Distribution

You can use the following menu to select from the different types of binomial distribution.

- \(\{Bpd\}/(Bcd)\) ... \{binomial probability\}/\{binomial cumulative density\} calculation
Binomial probability

Binomial probability calculates a probability at specified value for the discrete binomial distribution with the specified number of trials and probability of success on each trial.

\[f(x) = \binom{n}{x} p^x (1-p)^{n-x} \quad (x = 0, 1, \ldots, n) \]

\[p : \text{success probability} \quad (0 \leq p \leq 1) \]

\[n : \text{number of trials} \]

Perform the following key operations from the statistical data list.

\[
\begin{align*}
\text{F5} \ (\text{DIST}) & \quad \text{F5} \ (\text{BINM}) & \quad \text{F1} \ (\text{Bpd}) \\
\end{align*}
\]

The following shows the meaning of each item when data is specified using list specification.

- Data data type
- List list whose contents you want to use as sample data
- Numtrial number of trials (positive integer)
- \(p \) success probability (0 \leq p \leq 1)
- Execute executes a calculation

The following shows the meaning of a parameter data specification item that is different from list data specification.

\[x \] \quad \text{integer from 0 to} \ n

Example

To calculate binomial probability for one list of data

For this example, we will calculate binomial probability \(f(x) \) for \(x = \{10, 11, 12, 13, 14\} \) when \(n = 15 \) and success probability = 0.6.

\[
\begin{align*}
\text{F1} \ (\text{List}) & \quad \text{F1} \ (\text{List1}) \\
\text{1} & \quad \text{5} \ \text{EXE} \\
\text{0} & \quad \text{6} \ \text{EXE} \\
\text{F1} \ (\text{CALC}) \\
\end{align*}
\]
Binomial cumulative density

Binomial cumulative density calculates a cumulative probability at specified value for the discrete binomial distribution with the specified number of trials and probability of success on each trial.

Perform the following key operations from the statistical data list.

| F5 (DIST) | F5 (BINM) | F2 (Bcd) |

The following shows the meaning of each item when data is specified using list specification.

- Data data type
- List list whose contents you want to use as sample data
- Numtrial number of trials (positive integer)
- p success probability ($0 < p < 1$)
- Execute executes a calculation

The following shows the meaning of a parameter data specification item that is different from list data specification.

x integer from 0 to n

Example To calculate binomial cumulative probability for one list of data

For this example, we will calculate binomial cumulative probability for data = {10, 11, 12, 13, 14} when Numtrial = 15 and success probability = 0.6.
Poisson Distribution

You can use the following menu to select from the different types of Poisson distribution.

- \(\text{Ppd}/\text{Pcd} \) ... (Poisson probability)/(Poisson cumulative density) calculation

Poisson probability

Poisson probability calculates a probability at specified value for the discrete Poisson distribution with the specified mean.

\[
f(x) = \frac{e^{-\mu} \mu^x}{x!} \quad (x = 0, 1, 2, \ldots) \quad \mu : \text{mean} \ (\mu > 0)
\]

Perform the following key operations from the statistical data list.

- F6 (DIST)
- F6 (>)
- F1 (POISN)
- F1 (Ppd)

The following shows the meaning of each item when data is specified using list specification.

- Data data type
- List list whose contents you want to use as sample data
- \(\mu \) mean \ (\mu > 0)
- Execute executes a calculation

The following shows the meaning of a parameter data specification item that is different from list data specification.

- \(x \) value

Example: To calculate Poisson probability for one list of data

For this example, we will calculate Poisson probability for data \(\{2, 3, 4\} \) when \(\mu = 6 \).

\[
\begin{align*}
\text{probability when } x &= 2 \\
\text{probability when } x &= 3 \\
\text{probability when } x &= 4
\end{align*}
\]
Poisson cumulative density

Poisson cumulative density calculates a cumulative probability at specified value for the discrete Poisson distribution with the specified mean.

Perform the following key operations from the statistical data list.

```
F5 (DIST)  F6 (>)  F1 (POISN)  F2 (Pcd)
```

The following shows the meaning of each item when data is specified using list specification.

- Data data type
- List list whose contents you want to use as sample data
- μ mean ($\mu > 0$)
- Execute executes a calculation

The following shows the meaning of a parameter data specification item that is different from list data specification.

- x value

Example

To calculate Poisson cumulative probability for one list of data

For this example, we will calculate Poisson cumulative probability for data = \{2, 3, 4\} when $\mu = 6$.

```
F1 (List)  F1 (List1)  6  F1 (CALC)
```

Geometric Distribution

You can use the following menu to select from the different types of geometric distribution.

- \{(Gpd)/(Gcd)\} ... \{geometric probability\}/\{geometric cumulative density\}
Geometric probability

Geometric probability calculates a probability at specified value, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success.

\[f(x) = p(1 - p)^{x-1} \quad (x = 1, 2, 3, \ldots) \]

Perform the following key operations from the statistical data list.

- F5 (DIST)
- F6 (>)
- F2 (GEO)
- F1 (Gpd)

The following shows the meaning of each item when data is specified using list specification.

- Data data type
- List list whose contents you want to use as sample data
- \(p \) success probability \((0 < p < 1) \)
- Execute executes a calculation

The following shows the meaning of a parameter data specification item that is different from list data specification.

\[|x : 0 | \]

- \(x \) value

- Positive integer number is calculated whether list data (Data:List) or \(x \) value (Data:variable) is specified.

Example

To calculate geometric probability for one list of data

For this example, we will calculate geometric probability for data \(= \{3, 4, 5\} \) when \(p = 0.4 \).
Geometric cumulative density

Geometric cumulative density calculates a cumulative probability at specified value, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success.

Perform the following key operations from the statistical data list.

```
F5 (DIST)
F6 (>)
F2 (GEO)
F2 (Gcd)
```

The following shows the meaning of each item when data is specified using list specification.

- **Data** data type
- **List** list whose contents you want to use as sample data
- **p** success probability (0 < p < 1)
- **Execute** executes a calculation

The following shows the meaning of a parameter data specification item that is different from list data specification.

- **x** value

- Positive integer number is calculated whether list data (Data:List) or x value (Data:variable) is specified.

Example

To calculate geometric cumulative probability for one list of data

For this example, we will calculate geometric cumulative probability for data = {2, 3, 4} when \(p = 0.5 \).

```
F1 (List)▼
F1 (List1)▼
0 ▼ 5 ▼ EXE
F1 (CALC)
```

Cumulative probability when \(x = 2 \)
Cumulative probability when \(x = 3 \)
Cumulative probability when \(x = 4 \)