fx-82MS
fx-83MS
fx-85MS
fx-270MS
fx-300MS
fx-350MS

User's Guide
Removing and Replacing the Calculator's Cover

• **Before starting①**
 Holding the cover as shown in the illustration, slide the unit out of the cover.

• **After you are finished②**
 Holding the cover as shown in the illustration, slide the unit out of the cover.

• Always slide the keyboard end of the unit into the cover first. Never slide the display end of the unit into the cover.
Safety Precautions

Be sure to read the following safety precautions before using this calculator. Keep this manual handy for later reference.

Caution

This symbol is used to indicate information that can result in personal injury or material damage if ignored.

Batteries

- After removing the battery from the calculator, put it in a safe place where it will not get into the hands of small children and accidentally swallowed.
- Keep batteries out of the reach of small children. If accidentally swallowed, consult with a physician immediately.
- Never charge batteries, try to take batteries apart, or allow batteries to become shorted. Never expose batteries to direct heat or dispose of them by incineration.
- Misuse of batteries can cause them to leak and damage nearby items, and can create the risk of fire and personal injury.
 - Always make sure that the battery’s positive + and negative − ends are facing correctly when you load it into the calculator.
 - Remove the battery if you do not plan to use the calculator for a long time (fx-82MS/fx-83MS/fx-270MS/fx-350MS).
 - Use only the type of battery specified for this calculator in this manual.

Disposing of the Calculator

- Never dispose of the calculator by burning it. Doing so can cause certain components to suddenly burst, creating the risk of fire and personal injury.
- The displays and illustrations (such as key markings) shown in this User’s Guide are for illustrative purposes only, and may differ somewhat from the actual items they represent.
The contents of this manual are subject to change without notice.
In no event shall CASIO Computer Co., Ltd. be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials. Moreover, CASIO Computer Co., Ltd. shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

Handling Precautions

• Be sure to press the ON key before using the calculator for the first time.
• Even if the calculator is operating normally, replace the battery at least once every three years for the fx-83MS/fx-85MS/fx-270MS/fx-300MS/fx-350MS, or at least once every two years for the fx-82MS. A dead battery can leak, causing damage to and malfunction of the calculator. Never leave a dead battery in the calculator.
• The battery that comes with this unit discharges slightly during shipment and storage. Because of this, it may require replacement sooner than the normal expected battery life.
• Low battery power can cause memory contents to become corrupted or lost completely. Always keep written records of all important data.
• Avoid use and storage in areas subjected to temperature extremes. Very low temperatures can cause slow display response, total failure of the display, and shortening of battery life. Also avoid leaving the calculator in direct sunlight, near a window, near a heater or anywhere else it might be exposed to very high temperatures. Heat can cause discoloration or deformation of the calculator’s case, and damage to internal circuitry.
• Avoid use and storage in areas subjected to large amounts of humidity and dust. Take care never to leave the calculator where it might be splashed by water or exposed to large amounts of humidity or dust. Such conditions can damage internal circuitry.
• Never drop the calculator or otherwise subject it to strong impact.
• Never twist or bend the calculator.
 Avoid carrying the calculator in the pocket of your trousers or other tight-fitting clothing where it might be subjected to twisting or bending.
• Never try to take the calculator apart.
• Never press the keys of the calculator with a ball-point pen or other pointed object.
• Use a soft, dry cloth to clean the exterior of the calculator.
 If the calculator becomes very dirty, wipe it off with a cloth moistened in a weak solution of water and a mild neutral household detergent. Wring out all excess moisture before wiping the calculator. Never use thinner, benzene or other volatile agents to clean the calculator. Doing so can remove printed markings and can damage the case.
Contents

Removing and Replacing the Calculator’s Cover ... 1

Safety Precautions ... 2

Handling Precautions ... 3

Two-line Display .. 7

Before getting started... 7

- Modes ... 7
- Input Capacity ... 8
- Making Corrections During Input 8
- Replay Function .. 9
- Error Locator ... 9
- Multi-statements .. 9
- Exponential Display Formats 10
- Decimal Point and Separator Symbols 10
- Initializing the Calculator 11

Basic Calculations .. 11

- Arithmetic Calculations 11
- Fraction Operations ... 11
- Percentage Calculations 13
- Degrees, Minutes, Seconds Calculations 14
- FIX, SCI, RND .. 15

Memory Calculations .. 16

- Answer Memory ... 16
- Consecutive Calculations 16
- Independent Memory .. 16
- Variables .. 17

Scientific Function Calculations 17

- Trigonometric/Inverse Trigonometric Functions ... 18
- Hyperbolic/Inverse Hyperbolic Functions 18
Common and Natural Logarithms/
Antilogarithms .. 19
Square Roots, Cube Roots, Roots, Squares,
Cubes, Reciprocals, Factorials, Random Numbers,
π, and Permutation/Combination 19
Angle Unit Conversion ... 20
Coordinate Conversion (Pol (x, y), Rec (r, θ)) 20
Engineering Notation Calculations 21
Statistical Calculations 21
Standard Deviation .. 21
Regression Calculations 24
Technical Information 28
When you have a problem............................. 28
Error Messages ... 28
Order of Operations .. 30
Stacks ... 31
Input Ranges ... 32
Power Supply ... 34
Specifications ... 37
Two-line Display

The two-line display makes it possible to view both the calculation formula and its result at the same time.

- The upper line shows the calculation formula.
- The lower line shows the result.

A separator symbol is displayed every three digits when the integer part of the mantissa has more than three digits.

Before getting started...

Modes

Before starting a calculation, you must first enter the correct mode as indicated in the table below.

<table>
<thead>
<tr>
<th>To perform this type of calculation:</th>
<th>Perform this key operation:</th>
<th>To enter this mode:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic arithmetic calculations</td>
<td>[MODE] 1</td>
<td>COMP</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>[MODE] 2</td>
<td>SD</td>
</tr>
<tr>
<td>Regression calculations</td>
<td>[MODE] 3</td>
<td>REG</td>
</tr>
</tbody>
</table>

- Pressing the [MODE] key more than once displays additional setup screens. Setup screens are described in the sections of this manual where they are actually used to change the calculator setup.
- In this manual, the name of the mode you need to enter in order to perform the calculations being described is indicated in the main title of each section.

Example: Statistical Calculations

SD

REG
Note!

• To return the calculation mode and setup to the initial defaults shown below, press \(\text{SHIFT} \) \(\text{CLR} \) 2 (Mode) \(\text{M} \).

 Calculation Mode: COMP
 Angle Unit: Deg
 Exponential Display Format: Norm 1
 Fraction Display Format: a/b/c
 Decimal Point Character: Dot

• Mode indicators appear in the upper part of the display.
• Be sure to check the current calculation mode (SD, REG, COMP) and angle unit setting (Deg, Rad, Gra) before beginning a calculation.

\[\text{Input Capacity} \]

• The memory area used for calculation input can hold 79 “steps.” One step is taken up each time you press a number key or arithmetic operator key (\(+\), \(-\), \(\times\), \(\div\)). A \(\text{SHIFT} \) or \(\text{ALPHA} \) key operation does not take up a step, so inputting \(\text{SHIFT} \) \(\sqrt{} \), for example, takes up only one step.
• You can input up to 79 steps for a single calculation. Whenever you input the 73rd step of any calculation, the cursor changes from “_” to “k” to let you know memory is running low. If you need to input more than 79 steps, you should divide your calculation into two or more parts.
• Pressing the \(\text{Ans} \) key recalls the last result obtained, which you can use in a subsequent calculation. See “Answer Memory” for more information about using the \(\text{Ans} \) key.

\[\text{Making Corrections During Input} \]

• Use \(\leftarrow \) and \(\rightarrow \) to move the cursor to the location you want.
• Press \(\text{DEL} \) to delete the number or function at the current cursor position.
• Press \(\text{SHIFT} \) \(\text{INS} \) to change to an insert cursor \(\square \). Inputting something while the insert cursor is on the display inserts the input at the insert cursor position.
• Pressing \(\text{SHIFT} \) \(\text{INS} \), or \(\text{M} \) returns to the normal cursor from the insert cursor.
Replay Function

- Every time you perform a calculation, the replay function stores the calculation formula and its result in replay memory. Pressing the ▲ key displays the formula and result of the calculation you last performed. Pressing ▲ again back steps sequentially (new-to-old) through past calculations.
- Pressing the ◀ or ▶ key while a replay memory calculation is on the display changes to the editing screen.
- Pressing the ◀ or ▶ key immediately after you finish a calculation displays the editing screen for that calculation.
- Pressing AC does not clear replay memory, so you can recall the last calculation even after you press AC.
- Replay memory capacity is 128 bytes for storage of both expressions and results.
- Replay memory is cleared by any of the following actions.
 - When you press the ON key
 - When you initialize modes and settings by pressing (or (3))
 - When you change from one calculation mode to another
 - When you turn off the calculator.

Error Locator

- Pressing ▶ or ◀ after an error occurs displays the calculation with the cursor positioned at the location where the error occurred.

Multi-statements

A multi-statement is an expression that is made up of two or more smaller expressions, which are joined using a colon (:).

- Example: To add 2 + 3 and then multiply the result by 4
Exponential Display Formats

This calculator can display up to 10 digits. Larger values are automatically displayed using exponential notation. In the case of decimal values, you can select between two formats that determine at what point exponential notation is used.

• To change the exponential display format, press the MODE key a number of times until you reach the exponential display format setup screen shown below.

- Press 1. On the format selection screen that appears, press 1 to select Norm 1 or 2 for Norm 2.

 Norm 1
 With Norm 1, exponential notation is automatically used for integer values with more than 10 digits and decimal values with more than two decimal places.

 Norm 2
 With Norm 2, exponential notation is automatically used for integer values with more than 10 digits and decimal values with more than nine decimal places.

• All of the examples in this manual show calculation results using the Norm 1 format.

Decimal Point and Separator Symbols

You can use the display setup (Disp) screen to specify the symbols you want for the decimal point and 3-digit separator.

• To change the decimal point and separator symbol setting, press the MODE key a number of times until you reach the setup screen shown below.

- Display the selection screen.
• Press the number key (1 or 2) that corresponds to the setting you want to use.

1 (Dot): Period decimal point, comma separator
2 (Comma): Comma decimal point, period separator

- Initializing the Calculator
- Perform the following key operation when you want to initialize the calculation mode and setup, and clear replay memory and variables.

\[\text{SHIFT CLR 3 (All)} \]

Basic Calculations

Arithmetic Calculations

Use the [COMP] key to enter the COMP Mode when you want to perform basic calculations.

COMP ... [MODE] 1

- Negative values inside of calculations must be enclosed within parentheses. For details, see “Order of Operations.”
- It is not necessary to enclose a negative exponent within parentheses.

\[\sin 2.34 \times 10^{-5} \rightarrow 2.34 \ \text{EXP (−)} \ 5 \]

- **Example 1:** \(3 \times (5 \times 10^{-9}) = 1.5 \times 10^{-8} \)

\[3 \ \times \ 5 \ \text{EXP (−)} \ 9 \]

- **Example 2:** \(5 \times (9 + 7) = 80 \)

\[5 \ \times \ (9 \ + \ 7) \]

- You can skip all operations before \(=\).

- **Fraction Operations**
- **Fraction Calculations**

- Values are displayed in decimal format automatically whenever the total number of digits of a fractional value (integer + numerator + denominator + separator marks) exceeds 10.
• Example 1: \(\frac{2}{3} + \frac{1}{5} = \frac{13}{15} \)
 \[2 \div 3 + 1 \div 5 = \text{13}, \text{15} \]

• Example 2: \(3 \div 4 + 1 \div 3 = \frac{11}{12} \)
 \[3 \div 1 \div 4 + 1 \div 2 \div 3 = \text{4}, \text{11}, \text{12} \]

• Example 3: \(\frac{2}{4} = \frac{1}{2} \)
 \[2 \div 4 = \text{1}, \text{2} \]

• Example 4: \(\frac{1}{2} + 1.6 = 2.1 \)
 \[1 \div 2 + 1.6 = \text{2}, \text{1} \]

Results of calculations that mix fraction and decimal values are always decimal.

Decimal ↔ Fraction Conversion

• Use the operation shown below to convert calculation results between decimal values and fraction values.
• Note that conversion can take as long as two seconds to perform.

• Example 1: \(2.75 = 2 \frac{3}{4} \) (Decimal → Fraction)
 \[2.75 \div \frac{\text{a%}}{} = \text{2}, \text{75} \div \text{3}, \text{4} \\text{Shift} \div \text{d/c} = \text{11}, \text{4} \]

• Example 2: \(\frac{1}{2} \leftrightarrow 0.5 \) (Fraction ↔ Decimal)
 \[1 \div 2 \div \text{a%} = \text{1}, \text{2} \\text{a%} = 0.5 \text{a%} = \text{1}, \text{2} \]
• **Mixed Fraction ↔ Improper Fraction Conversion**

 • Example: \[\frac{2}{3} \leftrightarrow \frac{5}{3} \]

 \[\begin{array}{c}
 1 \quad \text{a\%} \quad 2 \quad \text{a\%} \quad 3 \quad \Rightarrow \quad 1 \downarrow 2 \downarrow 3. \\
 \text{SHIFT} \quad d/c \quad 5 \downarrow 3. \\
 \text{SHIFT} \quad d/c \quad 1 \downarrow 2 \downarrow 3.
 \end{array} \]

 • You can use the display setup (Disp) screen to specify the display format when a fraction calculation result is greater than one.

 • To change the fraction display format, press the **MORE** key a number of times until you reach the setup screen shown below.

 ![Disp 1]

 • Display the selection screen.

 1

 • Press the number key (1 or 2) that corresponds to the setting you want to use.

 1 (ab/c): Mixed fraction

 2 (d/c): Improper fraction

 • An error occurs if you try to input a mixed fraction while the d/c display format is selected.

Percentage Calculations

• **Example 1**: To calculate 12% of 1500 \((180)\)

 \[1500 \times 12 \ \text{SHIFT} \ % \]

• **Example 2**: To calculate what percentage of 880 is 660 \((75\%)\)

 \[660 \div 880 \ \text{SHIFT} \ % \]

• **Example 3**: To add 15% onto 2500 \((2875)\)

 \[2500 \times 15 \ \text{SHIFT} \ % \ + \]

• **Example 4**: To discount 3500 by 25% \((2625)\)

 \[3500 \times 25 \ \text{SHIFT} \ % \ - \]

E-13
Example 5: To discount the sum of 168, 98, and 734 by 20%

\[
\begin{align*}
168 & + 98 + 734 = \text{Ans} \\
\text{SHIFT} & \text{STO A} \\
\text{ALPHA} & \times \ 20 \text{ SHIFT} \ % \ \rightarrow
\end{align*}
\]

* As shown here, if you want to use the current Answer Memory value in a mark up or discount calculation, you need to assign the Answer Memory value into a variable and then use the variable in the mark up/discount calculation. This is because the calculation performed when \(\% \) is pressed stores a result to Answer Memory before the \(\rightarrow \) key is pressed.

Example 6: If 300 grams are added to a test sample originally weighing 500 grams, what is the percentage increase in weight?

\[
\begin{align*}
300 & + 500 = \text{Ans} \\
\text{SHIFT} & \ %
\end{align*}
\]

Example 7: What is the percentage change when a value is increased from 40 to 46? How about to 48?

\[
\begin{align*}
46 & \rightarrow 40 = \text{Ans} \\
\text{SHIFT} & \ %
\end{align*}
\]

Degrees, Minutes, Seconds Calculations

You can perform sexagesimal calculations using degrees (hours), minutes, and seconds, and convert between sexagesimal and decimal values.

Example 1: To convert the decimal value 2.258 to a sexagesimal value and then back to a decimal value

\[
\begin{align*}
2.258 & \rightarrow 2^\circ15^\prime28.8'' \\
\text{SHIFT} & \rightarrow 2.258
\end{align*}
\]

Example 2: To perform the following calculation:

\[
12^\circ34^\prime56^\prime \times 3.45
\]

\[
\begin{align*}
12 & \rightarrow 34 \rightarrow 56 \times \ 3.45 = \text{Ans} \\
\end{align*}
\]

E-14
■ FIX, SCI, RND

- To change the settings for the number of decimal places, the number of significant digits, or the exponential display format, press the \textit{MODE} key a number of times until you reach the setup screen shown below.

<table>
<thead>
<tr>
<th>Fix</th>
<th>Sci</th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- Press the number key (1, 2, or 3) that corresponds to the setup item you want to change.

1 (Fix): Number of decimal places
2 (Sci): Number of significant digits
3 (Norm): Exponential display format

- \textbf{Example 1}: \(200 \div 7 \times 14 = \)

\[
200 \div 7 \times 14 = 400.00000
\]

\(\text{(Specifies three decimal places.)}\)

\(\text{(Internal calculation continues using 12 digits.)}\)

The following performs the same calculation using the specified number of decimal places.

\[
200 \div 7 = 28.571
\]

\(\text{(Internal rounding)}\)

\[
\times 14 = 399.994
\]

- Press \textit{MODE} \(\ldots (\text{Norm}) \ 1\) to clear the Fix specification.

- \textbf{Example 2}: \(1 \div 3\), displaying result with two significant digits (Sci 2)

\[
1 \div 3 = 3.3^{–01}
\]

- Press \textit{MODE} \(\ldots (\text{Norm}) \ 1\) to clear the Sci specification.
Use the MODE key to enter the COMP Mode when you want to perform a calculation using memory.

COMP ..

■ Answer Memory

- Whenever you press = after inputting values or an expression, the calculated result automatically updates Answer Memory contents by storing the result.
- In addition to =, Answer Memory contents are also updated with result whenever you press SHIFT %, M+, SHIFT M-, or SHIFT STO followed by a letter (A through F, or M, X, or Y).
- You can recall Answer Memory contents by pressing Ans.
- Answer Memory can store up to 12 digits for the mantissa and two digits for the exponent.
- Answer Memory contents are not updated if the operation performed by any of the above key operations results in an error.

■ Consecutive Calculations

- You can use the calculation result that is currently on the display (and also stored in Answer Memory) as the first value of your next calculation. Note that pressing an operator key while a result is displayed causes the displayed value to change to Ans, indicating it is the value that is currently stored in Answer Memory.
- The result of a calculation can also be used with a subsequent Type A function (x^2, x^3, x^{-1}, $x!$, DRG), +, –, $^\wedge(x^y)$, $\sqrt[n]{x}$, \times, \div, nPr and nCr.

■ Independent Memory

- Values can be input directly into memory, added to memory, or subtracted from memory. Independent memory is convenient for calculating cumulative totals.
- Independent memory uses the same memory area as variable M.
- To clear independent memory (M), input $\overline{0}$ SHIFT STO M (M+).
• Example:

\[
\begin{align*}
23 + 9 &= 32 \\
53 - 6 &= 47 \\
-45 \times 2 &= 90 \\
\text{(Total)} &= -11
\end{align*}
\]

\[
\begin{align*}
23 + 9 &\rightarrow \text{SHIFT} \ STO \ M \ (M+) \\
53 - 6 &\rightarrow 6 \ (M+) \\
45 \times 2 &\rightarrow \text{SHIFT} \ M- \\
\text{RCL} \ M &\rightarrow (M+)
\end{align*}
\]

Variables

• There are nine variables (A through F, M, X and Y), which can be used to store data, constants, results, and other values.

• Use the following operation to delete data assigned to a particular variable: \(0 \ \text{SHIFT} \ STO \ A \). This operation deletes the data assigned to variable A.

• Perform the following key operation when you want to clear the values assigned to all of the variables.

\(\text{SHIFT} \ CLR \ 1 \ (\text{McI}) \)

• Example: \(193.2 \div 23 = 8.4 \)

\[
193.2 \div 28 = 6.9
\]

\[
193.2 \ \text{SHIFT} \ STO \ A \ \div \ 23 \ \Rightarrow \\
\text{ALPHA} \ A \ \div \ 28 \ \Rightarrow
\]

Scientific Function Calculations

Use the \(\text{MODE} \) key to enter the COMP Mode when you want to perform scientific function calculations.

\[
\text{COMP} \ldots
Trigonometric/Inverse Trigonometric Functions

• To change the default angle unit (degrees, radians, grads), press the MODE key a number of times until you reach the angle unit setup screen shown below.

<table>
<thead>
<tr>
<th>Deg</th>
<th>Rad</th>
<th>Gra</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

• Press the number key (1, 2, or 3) that corresponds to the angle unit you want to use.

\[90^\circ = \frac{\pi}{2}\ \text{radians} = 100\ \text{grads}\]

• Example 1: \(\sin 63^\circ 52' 41'' = 0.897859012\)

\[
\begin{align*}
\text{MODE} & \quad \text{ rapid} \quad 1 \quad \text{(Deg)} \\
\sin & \quad 63 \quad 52 \quad 41 \quad \text{rapid} \quad \text{ rapid} \\
\end{align*}
\]

• Example 2: \(\cos \left(\frac{\pi}{3} \right) = 0.5\)

\[
\begin{align*}
\text{MODE} & \quad \text{ rapid} \quad 2 \quad \text{(Rad)} \\
\cos & \quad \left(\text{ rapid} \quad \text{ rapid} \quad \frac{\pi}{3} \quad \text{ rapid} \quad \text{ rapid} \quad \text{ rapid} \right) \\
\end{align*}
\]

• Example 3: \(\cos^{-1} \frac{\sqrt{2}}{2} = 0.25 \pi \ (\text{rad}) \left(= \frac{\pi}{4} \ (\text{rad}) \right)\)

\[
\begin{align*}
\text{SHIFT} & \quad \cos^{-1} \quad \left(\text{ rapid} \quad \sqrt{2} \quad \div \quad 2 \quad \text{ rapid} \quad \text{ rapid} \quad \text{ rapid} \right) \quad \text{Ans} \quad \div \quad \text{SHIFT} \quad \pi \quad \text{ rapid} \\
\end{align*}
\]

• Example 4: \(\tan^{-1} 0.741 = 36.53844577^\circ\)

\[
\begin{align*}
\text{SHIFT} & \quad \tan^{-1} \quad 0.741 \quad \text{ rapid} \\
\end{align*}
\]

Hyperbolic/Inverse Hyperbolic Functions

• Example 1: \(\sinh 3.6 = 18.28545536\)

\[
\begin{align*}
\text{hyp} & \quad \sin \quad 3.6 \quad \text{ rapid} \\
\end{align*}
\]

• Example 2: \(\sinh^{-1} 30 = 4.094622224\)

\[
\begin{align*}
\text{hyp} & \quad \text{SHIFT} \quad \sin^{-1} \quad 30 \quad \text{ rapid} \\
\end{align*}
\]
Common and Natural Logarithms/Antilogarithms

- Example 1: \(\log 1.23 = 0.089905111 \) \(\log 1.23 \)
- Example 2: \(\ln 90 = 4.49980967 \) \(\ln 90 \)
 \(\ln e = 1 \) \(\ln \) \(\alpha e \)
- Example 3: \(e^{10} = 22026.46579 \) \(\text{shift} \) \(e^x \) 10
- Example 4: \(10^{1.5} = 31.6227766 \) \(\text{shift} \) \(10^x \) 1.5
- Example 5: \(2^{-3} = 0.125 \) 2 \(\wedge \) \(\text{(-)} \) 3
- Example 6: \((-2)^4 = 16 \) \(\text{(-)} \) 2 \(\) \(\wedge \) 4

Negative values inside of calculations must be enclosed within parentheses. For details, see “Order of Operations.”

Square Roots, Cube Roots, Roots, Squares, Cubes, Reciprocals, Factorials, Random Numbers, \(\pi \), and Permutation/Combination

- Example 1: \(\sqrt{2} + \sqrt{3} \times \sqrt{5} = 5.287196909 \) \(\sqrt{2} \) \(+ \) \(\sqrt{3} \) \(\times \) \(\sqrt{5} \)
- Example 2: \(3\sqrt{5} + 3\sqrt{-27} = -1.290024053 \) \(\text{shift} \) \(\sqrt{5} \) \(+ \) \(\text{shift} \) \(\sqrt{-27} \)
- Example 3: \(7\sqrt[3]{123} \) (= 123\(^{\frac{1}{3}}\)) = 1.988647795 \(7 \) \(\text{shift} \) \(\sqrt[3]{123} \)
- Example 4: \(123 + 30^2 = 1023 \) 123 \(+ \) 30 \(\wedge \)
- Example 5: \(12^3 = 1728 \) 12 \(\wedge \)
- Example 6: \(\frac{1}{3} - \frac{1}{4} = 12 \) \(\text{(-)} \) 3 \(\wedge \) 4 \(\wedge \) \(\text{(-)} \) \(\wedge \) \(\text{(-)} \) \(\wedge \)
- Example 7: \(8! = 40320 \) \(8 \) \(\text{shift} \) \(\wedge \)

E-19
• **Example 8:** To generate a random number between 0.000 and 0.999

\[\text{SHIFT} \text{ Ran} \quad \Rightarrow \quad 0.664 \]

(The above value is a sample only. Results differ each time.)

• **Example 9:** \(3\pi = 9.424777961 \)

\[\text{3} \text{ SHIFT} \pi \quad \Rightarrow \]

• **Example 10:** To determine how many different 4-digit values can be produced using the numbers 1 through 7
 - Numbers cannot be duplicated within the same 4-digit value (1234 is allowed, but 1123 is not).

\[\text{7} \text{ SHIFT} \text{nPr} \quad 4 \quad \Rightarrow \quad 840 \]

• **Example 11:** To determine how many different 4-member groups can be organized in a group of 10 individuals

\[\text{10} \text{ nCr} \quad 4 \quad \Rightarrow \quad 210 \]

Angle Unit Conversion

- Press \(\text{SHIFT} \text{ DRG} \) to display the following menu.

<table>
<thead>
<tr>
<th>D</th>
<th>R</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- Pressing 1, 2, or 3 converts the displayed value to the corresponding angle unit.

- **Example:** To convert 4.25 radians to degrees

\[\text{MODE} \quad \text{1} \quad (\text{Deg}) \quad \text{4.25 SHIFT deg} \quad 2 \quad (\text{R}) \quad \Rightarrow \quad 4.25^\circ \quad 243.5070629 \]

Coordinate Conversion \((\text{Pol} (x, y), \text{Rec} (r, \theta))\)

- Calculation results are automatically assigned to variables E and F.

- **Example 1:** To convert polar coordinates \((r=2, \theta=60^\circ)\) to rectangular coordinates \((x, y)\) (Deg)

\[x = 1 \quad \text{SHIFT} \text{ Rec} \quad 2 \quad + \quad 60 \quad \Rightarrow \quad 1 \]

\[y = 1.732050808 \]

- Press \(\text{RCL} \ E \) to display the value of \(x\), or \(\text{RCL} \ F \) to display the value of \(y\).
Example 2: To convert rectangular coordinates \((1, \sqrt{3})\) to polar coordinates \((r, \theta)\) (Rad)

\[
r = 2 \\
\theta = 1.047197551
\]

Press \(\text{RCL} \ F\) to display the value of \(r\), or \(\text{RCL} \ E\) to display the value of \(\theta\).

Engineering Notation Calculations

Example 1: To convert 56,088 meters to kilometers

\[
\rightarrow 56.088 \times 10^{-3} \quad \text{56088} \equiv \text{ENG}
\]

(km)

Example 2: To convert 0.08125 grams to milligrams

\[
\rightarrow 81.25 \times 10^{-3} \quad \text{0.08125} \equiv \text{ENG}
\]

(mg)

Statistical Calculations

| SD | REG |

Standard Deviation

Use the \(\text{MODE}\) key to enter the SD Mode when you want to perform statistical calculations using standard deviation.

SD .. \(\text{MODE} \ 2\)

In the SD Mode and REG Mode, the \(\text{M+}\) key operates as the \(\text{DT}\) key.

Always start data input with \(\text{SHIFT} \ \text{CLR} \ 1\) (Scl) \(\equiv\) to clear statistical memory.

Input data using the key sequence shown below.

\(<x\text{-data}> \text{DT}\)

Input data is used to calculate values for \(n, \Sigma x, \Sigma x^2, \bar{x}, \sigma_n\) and \(\sigma_{n-1}\), which you can recall using the key operations noted nearby.
Data Input Precautions

- **Example:** To calculate σ_{n-1}, σ_n, \bar{x}, n, Σx, and Σx^2 for the following data: 55, 54, 51, 55, 53, 53, 54, 52

In the SD Mode:

<table>
<thead>
<tr>
<th>To recall this type of value:</th>
<th>Perform this key operation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σx^2</td>
<td>SHIFT S-SUM 1</td>
</tr>
<tr>
<td>Σx</td>
<td>SHIFT S-SUM 2</td>
</tr>
<tr>
<td>n</td>
<td>SHIFT S-SUM 3</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>SHIFT S-VAR 1</td>
</tr>
<tr>
<td>σ_n</td>
<td>SHIFT S-VAR 2</td>
</tr>
<tr>
<td>σ_{n-1}</td>
<td>SHIFT S-VAR 3</td>
</tr>
</tbody>
</table>

Each time you press DT to register your input, the number of data input up to that point is indicated on the display (n value).

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Standard Deviation (σ_{n-1})</td>
<td>1.407885953</td>
</tr>
<tr>
<td>Population Standard Deviation (σ_n)</td>
<td>1.316956719</td>
</tr>
<tr>
<td>Arithmetic Mean (\bar{x})</td>
<td>53.375</td>
</tr>
<tr>
<td>Number of Data (n)</td>
<td>8</td>
</tr>
<tr>
<td>Sum of Values (Σx)</td>
<td>427</td>
</tr>
<tr>
<td>Sum of Squares of Values (Σx^2)</td>
<td>22805</td>
</tr>
</tbody>
</table>

Data Input Precautions

- **DT DT** inputs the same data twice.
- You can also input multiple entries of the same data using $\text{SHIFT } \Rightarrow$. To input the data 110 ten times, for example, press 110 $\text{SHIFT } ; ; 10 \text{ DT}$.
- You can perform the above key operations in any order, and not necessarily that shown above.
- While inputting data or after inputting data is complete, you can use the A and V keys to scroll through data you have input. If you input multiple entries of the same data using $\text{SHIFT } ; ;$ to specify the data frequency (number of data items) as described above, scrolling through data shows both the data item and a separate screen for the data frequency (Freq).
• You can then edit the displayed data, if you want. Input the new value and then press the \(=\) key to replace the old value with the new one. This also means that if you want to perform some other operation (calculation, recall of statistical calculation results, etc.), you should always press the AC key first to exit data display.

• Pressing the DT key instead of = after changing a value on the display registers the value you input as a new data item, and leaves the old value as it is.

• You can delete a data value displayed using \(\Delta\) and \(\nabla\) by pressing [SHIFT] [CL]. Deleting a data value causes all values following it to be shifted up.

• Data values you register are normally stored in calculator memory. The message “Data Full” appears and you will not be able to input any more data if there is no memory left for data storage. If this happens, press the \(=\) key to display the screen shown below.

```
1             2
Edi t OFF ESC
```

Press 2 to exit data input without registering the value you just input.
Press 1 if you want to register the value you just input, without saving it in memory. If you do this, however, you will not be able to display or edit any of the data you have input.

• To delete data you have just input, press [SHIFT] [CL].

• After inputting statistical data in the SD Mode or REG Mode, you will be unable to display or edit individual data items any longer after perform either the following operations.
Changing to another mode
Changing the regression type (Lin, Log, Exp, Pwr, Inv, Quad)
Regression Calculations

Use the [MODE] key to enter the REG Mode when you want to perform statistical calculations using regression.

REG ..

• In the SD Mode and REG Mode, the [M+] key operates as the [DT] key.
• Entering the REG Mode displays screens like the ones shown below.

- Press the number key (1, 2, or 3) that corresponds to the type of regression you want to use.
 1 (Lin) : Linear regression
 2 (Log) : Logarithmic regression
 3 (Exp) : Exponential regression
 1 (Pwr) : Power regression
 2 (Inv) : Inverse regression
 3 (Quad) : Quadratic regression

• Always start data input with [SHIFT] [CLR] 1 (Scl) [SPACE] to clear statistical memory.
• Input data using the key sequence shown below.
 <x-data> [M+] <y-data> [DT]

• The values produced by a regression calculation depend on the values input, and results can be recalled using the key operations shown in the table below.
Quadratic Regression

<table>
<thead>
<tr>
<th>To recall this type of value</th>
<th>Perform this key operation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σx^2</td>
<td>{\texttt{SHIFT}} S-SUM 1</td>
</tr>
<tr>
<td>Σx</td>
<td>{\texttt{SHIFT}} S-SUM 2</td>
</tr>
<tr>
<td>n</td>
<td>{\texttt{SHIFT}} S-SUM 3</td>
</tr>
<tr>
<td>Σy^2</td>
<td>{\texttt{SHIFT}} S-SUM {\texttt{стрелка}} 1</td>
</tr>
<tr>
<td>Σy</td>
<td>{\texttt{SHIFT}} S-SUM {\texttt{стрелка}} 2</td>
</tr>
<tr>
<td>Σxy</td>
<td>{\texttt{SHIFT}} S-SUM {\texttt{стрелка}} 3</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>{\texttt{SHIFT}} S-VAR 1</td>
</tr>
<tr>
<td>$x\sigma_n$</td>
<td>{\texttt{SHIFT}} S-VAR 2</td>
</tr>
<tr>
<td>$x\sigma_{n-1}$</td>
<td>{\texttt{SHIFT}} S-VAR 3</td>
</tr>
<tr>
<td>\bar{y}</td>
<td>{\texttt{SHIFT}} S-VAR {\texttt{стрелка}} 1</td>
</tr>
<tr>
<td>$y\sigma_n$</td>
<td>{\texttt{SHIFT}} S-VAR {\texttt{стрелка}} 2</td>
</tr>
<tr>
<td>$y\sigma_{n-1}$</td>
<td>{\texttt{SHIFT}} S-VAR {\texttt{стрелка}} 3</td>
</tr>
</tbody>
</table>

- The values in the above tables can be used inside of expressions the same way you use variables.

Linear Regression

- The regression formula for linear regression is: $y = A + Bx$.
• **Example:** Atmospheric Pressure vs. Temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Atmospheric Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°C</td>
<td>1003 hPa</td>
</tr>
<tr>
<td>15°C</td>
<td>1005 hPa</td>
</tr>
<tr>
<td>20°C</td>
<td>1010 hPa</td>
</tr>
<tr>
<td>25°C</td>
<td>1011 hPa</td>
</tr>
<tr>
<td>30°C</td>
<td>1014 hPa</td>
</tr>
</tbody>
</table>

Perform linear regression to determine the regression formula terms and correlation coefficient for the data nearby. Next, use the regression formula to estimate atmospheric pressure at –5°C and temperature at 1000 hPa. Finally, calculate the coefficient of determination \(r^2 \) and sample covariance

\[
\frac{\sum xy - n \cdot \bar{x} \cdot \bar{y}}{n - 1}
\]

In the REG Mode:

1. **(Lin)**
2. **(Scl)** **(Stat clear)**
3. **10** ◄ **1003 DT**
 - Each time you press **DT** to register your input, the number of data input up to that point is indicated on the display (n value).
4. **15** ◄ **1005 DT**
5. **20** ◄ **1010 DT** **25** ◄ **1011 DT** **30** ◄ **1014 DT**

Regression Coefficient A = **997.4**
Regression Coefficient B = **0.56**
Correlation Coefficient \(r = 0.982607368 \)
Atmospheric Pressure at –5°C = **994.6**

Temperature at 1000 hPa = **4.642857143**

Coefficient of Determination = **0.965517241**

Sample Covariance = **35**
• Logarithmic, Exponential, Power, and Inverse Regression

• Use the same key operations as linear regression to recall results for these types of regression.
• The following shows the regression formulas for each type of regression.

<table>
<thead>
<tr>
<th>Regression Type</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logarithmic Regression</td>
<td>(y = A + B \cdot \ln x)</td>
</tr>
<tr>
<td>Exponential Regression</td>
<td>(y = A \cdot e^{B \cdot x}) (In (y = \ln A + Bx))</td>
</tr>
<tr>
<td>Power Regression</td>
<td>(y = A \cdot x^B) (In (y = \ln A + B \ln x))</td>
</tr>
<tr>
<td>Inverse Regression</td>
<td>(y = A + B \cdot \frac{1}{x})</td>
</tr>
</tbody>
</table>

• Quadratic Regression

• The regression formula for quadratic regression is:
 \(y = A + Bx + Cx^2 \).

• Example:

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(y_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>1.6</td>
</tr>
<tr>
<td>50</td>
<td>23.5</td>
</tr>
<tr>
<td>74</td>
<td>38.0</td>
</tr>
<tr>
<td>103</td>
<td>46.4</td>
</tr>
<tr>
<td>118</td>
<td>48.0</td>
</tr>
</tbody>
</table>

Perform quadratic regression to determine the regression formula terms for the data nearby. Next, use the regression formula to estimate the values for \(\hat{y} \) (estimated value of \(y \)) for \(x_i = 16 \) and \(\hat{x} \) (estimated value of \(x \)) for \(y_i = 20 \).

In the REG Mode:

\[
\begin{align*}
\text{Regression Coefficient } A & = -35.59856934 \\
\text{Regression Coefficient } B & = 1.495939413 \\
\text{Regression Coefficient } C & = -6.71629667 \times 10^{-3}
\end{align*}
\]

\(\hat{y} \) when \(x_i = 16 = -13.38291067 \)

\(\hat{x} \) when \(y_i = 20 = 47.14556728 \)

\(\hat{x} \) when \(y_i = 20 = 175.5872105 \)
Data Input Precautions

- **DT DT** inputs the same data twice.
- You can also input multiple entries of the same data using **SHIFT :**. To input the data “20 and 30” five times, for example, press 20 * 30 **SHIFT :** 5 **DT**.
- The above results can be obtained in any order, and not necessarily that shown above.
- Precautions when editing data input for standard deviation also apply for regression calculations.
- Do not use variables A through F, X, or Y to store data when performing statistical calculations. These variables are used for statistical calculation temporary memory, so any data you may have assigned to them may be replaced by other values during statistical calculations.
- Entering the REG Mode and selecting a regression type (Lin, Log, Exp, Pwr, Inv, Quad) clear variables A through F, X, and Y. Changing from one regression type to another inside the REG Mode also clears these variables.

Technical Information

When you have a problem......

If calculation results are not what you expect or if an error occurs, perform the following steps.

1. Press **SHIFT CLR 2** (Mode) **ON** to initialize all modes and settings.
2. Check the formula you are working with to confirm it is correct.
3. Enter the correct mode and try performing the calculation again.

If the above steps do not correct the problem, press the **ON** key. The calculator performs a self-check operation and deletes all data stored in memory if any abnormality is detected. Make sure you always keep written copies of all important data.

Error Messages

The calculator is locked up while an error message is on the display. Press **AC** to clear the error, or press **~** or **~** to display the calculation and correct the problem. See “Error Locator” for details.
Math ERROR

• Causes
 • Calculation result is outside the allowable calculation range.
 • An attempt to perform a function calculation using a value that exceeds the allowable input range.
 • An attempt to perform an illogical operation (division by zero, etc.)

• Action
 • Check your input values and make sure they are all within the allowable ranges. Pay special attention to values in any memory areas you are using.

Stack ERROR

• Cause
 • The capacity of the numeric stack or operator stack is exceeded.

• Action
 • Simplify the calculation. The numeric stack has 10 levels and the operator stack has 24 levels.
 • Divide your calculation into two or more separate parts.

Syntax ERROR

• Cause
 • An attempt to perform an illegal mathematical operation.

• Action
 • Press ← or → to display the calculation with the cursor located at the location of the error and make required corrections.

Arg ERROR

• Cause
 • Improper use of an argument

• Action
 • Press ← or → to display the location of the cause of the error and make required corrections.
Order of Operations

Calculations are performed in the following order of precedence.

1. Coordinate transformation: Pol (x, y), Rec (r, θ)
2. Type A functions:
 - With these functions, the value is entered and then the function key is pressed.
 - $x^3, x^2, x^{-1}, x!$, °', "
 - $\hat{x}, \hat{x}_1, \hat{x}_2, \hat{y}$
 - Angle unit conversions (DRG►)
3. Powers and roots: $^\wedge(x^y), \sqrt[\wedge](\sqrt[\wedge])$
4. $a^{b/c}$
5. Abbreviated multiplication format in front of π, e (natural logarithm base), memory name, or variable name: 2π, 3e, 5A, πA, etc.
6. Type B functions:
 - With these functions, the function key is pressed and then the value is entered.
 - $\sqrt[\wedge], \sqrt{\wedge}$, log, ln, e^x, 10^x, sin, cos, tan, sin⁻¹, cos⁻¹, tan⁻¹, sinh, cosh, tanh, sinh⁻¹, cosh⁻¹, tanh⁻¹, (−)
7. Abbreviated multiplication format in front of Type B functions: 2 $\sqrt{\wedge} 3$, Alog2, etc.
8. Permutation and combination: nPr, nCr
9. $\times, ÷$
10. $+, −$

- Operations of the same precedence are performed from right to left. $e^{1\ln(\sqrt[\wedge](\sqrt[\wedge]120))} \neq e^{\ln(\sqrt[\wedge](\sqrt[\wedge]120))}$
- Other operations are performed from left to right.
- Operations enclosed in parentheses are performed first.
- When a calculation contains an argument that is a negative number, the negative number must be enclosed within parentheses. The negative sign (−) is treated as a Type B function, so particular care is required when the calculation includes a high-priority Type A function, or power or root operations.

Example: $(−2)^4 = 16$

$−2^4 = −16$
Stacks

This calculator uses memory areas, called “stacks,” to temporarily store values (numeric stack) and commands (command stack) according to their precedence during calculations. The numeric stack has 10 levels and the command stack has 24 levels. A stack error (Stack ERROR) occurs whenever you try to perform a calculation that is so complex that the capacity of a stack is exceeded.

• Example:

\[
2 \times ((3 + 4 \times (5 + 4)) \div 3) \div 5) + 8 =
\]

```
  1  2  3  4  5  6  7
  1  2  3  4  5  6  7
```

<table>
<thead>
<tr>
<th>Numeric Stack</th>
<th>Command Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
<td>1 \times</td>
</tr>
<tr>
<td>2 3</td>
<td>2 (</td>
</tr>
<tr>
<td>3 4</td>
<td>3 (</td>
</tr>
<tr>
<td>4 5</td>
<td>4 +</td>
</tr>
<tr>
<td>5 4</td>
<td>5 \times</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

• Calculations are performed in sequence according to “Order of Operations.” Commands and values are deleted from the stack as the calculation is performed.
Input Ranges

Internal digits: 12

Accuracy: As a rule, accuracy is ± 1 at the 10th digit.

<table>
<thead>
<tr>
<th>Functions</th>
<th>Input Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin x$</td>
<td>DEG: $0 \leq</td>
</tr>
<tr>
<td>$\cos x$</td>
<td>DEG: $0 \leq</td>
</tr>
<tr>
<td>$\tan x$</td>
<td>DEG: Same as $\sin x$, except when $</td>
</tr>
<tr>
<td>$\sin^{-1} x$</td>
<td>$0 \leq</td>
</tr>
<tr>
<td>$\cos^{-1} x$</td>
<td>$1 \leq x \leq 4.999999999 \times 10^{99}$</td>
</tr>
<tr>
<td>$\tan^{-1} x$</td>
<td>$0 \leq</td>
</tr>
<tr>
<td>$\sinh x$</td>
<td>$0 \leq</td>
</tr>
<tr>
<td>$\cosh x$</td>
<td>$0 \leq</td>
</tr>
<tr>
<td>$\sinh^{-1} x$</td>
<td>$0 \leq</td>
</tr>
<tr>
<td>$\cosh^{-1} x$</td>
<td>$1 \leq x \leq 4.999999999 \times 10^{99}$</td>
</tr>
<tr>
<td>$\tanh x$</td>
<td>$0 \leq</td>
</tr>
<tr>
<td>$\tanh^{-1} x$</td>
<td>$0 \leq</td>
</tr>
<tr>
<td>$\log x / \ln x$</td>
<td>$0 < x \leq 9.999999999 \times 10^{99}$</td>
</tr>
<tr>
<td>10^x</td>
<td>$-9.999999999 \times 10^{99} \leq x \leq 99.99999999$</td>
</tr>
<tr>
<td>e^x</td>
<td>$-9.999999999 \times 10^{99} \leq x \leq 230.2585092$</td>
</tr>
<tr>
<td>\sqrt{x}</td>
<td>$0 \leq x < 1 \times 10^{100}$</td>
</tr>
<tr>
<td>x^2</td>
<td>$</td>
</tr>
<tr>
<td>$1/x$</td>
<td>$</td>
</tr>
<tr>
<td>$\frac{3}{\sqrt{x}}$</td>
<td>$</td>
</tr>
<tr>
<td>$x!$</td>
<td>$0 \leq x \leq 69$ (x is an integer)</td>
</tr>
<tr>
<td>nPr</td>
<td>$0 \leq n < 1 \times 10^{10}$, $0 \leq r \leq n$ (n, r are integers)
 $1 \leq {n!/(n-r)!} < 1 \times 10^{100}$</td>
</tr>
<tr>
<td>Functions</td>
<td>Input Range</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>(nCr)</td>
<td>(0 \leq n < 1 \times 10^{10}, 0 \leq r \leq n) ((n, r) are integers)(1 \leq [n!/{r!(n-r)!]}] < 1 \times 10^{100})</td>
</tr>
<tr>
<td>(\text{Pol}(x, y))</td>
<td>(</td>
</tr>
<tr>
<td>(\text{Rec}(r, \theta))</td>
<td>(0 \leq r \leq 9.999999999 \times 10^{99}) (\theta:) Same as sin (x)</td>
</tr>
<tr>
<td>(o^1)</td>
<td>(</td>
</tr>
<tr>
<td>(o^1)</td>
<td>(</td>
</tr>
<tr>
<td>(\text{Dec})</td>
<td>Decimal ↔ Sexagesimal Conversions (0^\circ 0^\circ 0^\circ \leq</td>
</tr>
<tr>
<td>(\wedge(x^y))</td>
<td>(x > 0: -1 \times 10^{100} < y \log x < 100) (x = 0: y > 0) (1) (x < 0: y = n, \frac{1}{2n+1}) ((n) is an integer) () However: (-1 \times 10^{100} < y \log</td>
</tr>
<tr>
<td>(x \sqrt[n]{y})</td>
<td>(y > 0: x \neq 0) (-1 \times 10^{100} < 1/x \log y < 100) (y = 0: x > 0) (y < 0: x = 2n+1, \frac{1}{n}) ((n \neq 0; n) is an integer) () However: (-1 \times 10^{100} < 1/x \log</td>
</tr>
<tr>
<td>(a^b/c)</td>
<td>Total of integer, numerator, and denominator must be 10 digits or less (including division marks).</td>
</tr>
<tr>
<td>(\text{SD (REG)})</td>
<td>(</td>
</tr>
</tbody>
</table>

* For a single calculation, calculation error is \(\pm 1 \) at the 10th digit. (In the case of exponential display, calculation error is \(\pm 1 \) at the last significant digit.) Errors are cumulative in the case of consecutive calculations, which can also cause them to become large. (This is also true of internal consecutive calculations that are performed in the case of \(\wedge(x^y), x \sqrt[n]{y} , x!, \sqrt[3]{y} , nPr, nCr, \) etc.) In the vicinity of a function’s singular point and point of inflection, errors are cumulative and may become large.
The type of battery you should use depends on the model number of your calculator.

fx-85MS/fx-300MS
The TWO WAY POWER system actually has two power supplies: a solar cell and a G13 Type (LR44) button battery. Normally, calculators equipped with a solar cell alone can operate only when relatively bright light is present. The TWO WAY POWER system, however, lets you continue to use the calculator as long as there is enough light to read the display.

• Replacing the Battery

Either of the following symptoms indicates battery power is low, and that the battery should be replaced.

- Display figures are dim and difficult to read in areas where there is little light available.
- Nothing appears on the display when you press the **ON** key.

• To replace the battery

1. Remove the six screws that hold the back cover in place and then remove the back cover.
2. Remove the old battery.
3. Wipe off the sides of new battery with a dry, soft cloth. Load it into the unit with the positive **+** side facing up (so you can see it).
4. Replace the back cover and secure it in place with the six screws.
5. Press **ON** to turn power on. Be sure not to skip this step.
fx-83MS/fx-270MS/fx-350MS
This calculator is powered by single G13 Type (LR44) button battery.

• Replacing the Battery

Dim figures on the display of the calculator indicate that battery power is low. Continued use of the calculator when the battery is low can result in improper operation. Replace the battery as soon as possible when display figures become dim.

• To replace the battery

1. Press \textbf{OFF} to turn off power.
2. Remove the screw that holds the battery cover in place and then remove the battery cover.
3. Remove the old battery.
4. Wipe off the sides of new battery with a dry, soft cloth. Load it into the unit with the positive \(+ \) side facing up (so you can see it).
5. Replace the battery cover and secure it in place with the screw.
6. Press \textbf{ON} to turn power on.
fx-82MS
This calculator is powered by a single AA-size battery.

• Replacing the Battery

Dim figures on the display of the calculator indicate that battery power is low. Continued use of the calculator when the battery is low can result in improper operation. Replace the battery as soon as possible when display figures become dim.

• To replace the battery

1. Press \[\text{SHIFT} \ \text{OFF}\] to turn power off.
2. Remove the six screws that hold the back cover in place and then remove the back cover.
3. Remove the old battery.
4. Load a new battery into the unit with its positive + and negative − ends facing correctly.
5. Replace the back cover and secure it in place with the six screws.
6. Press \[\text{ON}\] to turn power on.

Auto Power Off

Calculator power automatically turns off if you do not perform any operation for about six minutes. When this happens, press \[\text{ON}\] to turn power back on.
Specifications

Power Supply:
- fx-82MS: Single AA-size battery (R6P (SUM-3))
- fx-83MS/fx-270MS/fx-350MS: Single G13 Type button battery (LR44)
- fx-85MS/fx-300MS: Solar cell and a single G13 Type button battery (LR44)

Battery Life:
- fx-82MS: Approximately 17,000 hours continuous display of flashing cursor. Approximately 2 years when left with power turned off.
- fx-83MS/fx-270MS/fx-350MS: Approximately 9,000 hours continuous display of flashing cursor. Approximately 3 years when left with power turned off.
- fx-85MS/fx-300MS: Approximately 3 years (1 hour use per day).

Dimensions:
- fx-82MS: 18.6 (H) × 85 (W) × 156 (D) mm
 \(\frac{3}{4}" (H) \times 3\frac{3}{8}" (W) \times 6\frac{1}{8}" (D)
- fx-83MS/fx-85MS/fx-270MS/fx-300MS/fx-350MS: 12.2 (H) × 85 (W) × 155 (D) mm
 \(\frac{1}{2}" (H) \times 3\frac{3}{8}" (W) \times 6\frac{1}{8}" (D)

Weight:
- fx-82MS: 125 g (4.4 oz) including battery
- fx-83MS/fx-85MS/fx-270MS/fx-300MS/fx-350MS: 100 g (3.5 oz) including battery

Power Consumption: 0.0002 W

Operating Temperature: 0°C to 40°C (32°F to 104°F)