NAUR |/ \TECH

€ CORPORATION

CETerm Scripting Guide

for Version 5.5.0 or later

Naurtech Web Browser
And
Terminal Emulation Clients

For Windows CE Devices

CETerm | CE3270 | CE5250 | CEVT220

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Copyright Notice

This document may not be reproduced in full, in part or in any form, without prior
written permission of Naurtech Corporation.

Naurtech Corporation makes no warranties with respect to the contents of this
document and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Naurtech Corporation, reserves the
right to revise this publication and referenced software without any obligation to
notify any person or organization of such revision or changes.

Trademarks

CETerm®, CE3270™, CE5250™, CEVT220™ are trademarks of Naurtech
Corporation.

Other product names mentioned in this manual may be trademarks or registered
trademarks of their respective companies and are hereby acknowledged.

Software Version

This document is for Version 5.5.0 or later of Naurtech Web Browser
and Terminal Emulation clients.

CETerm Scripting Guide Page 2

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Table of Contents

COPYHGNE NOTICE ..ottt e et e e e e e
QLI = 10 (=100 =T TR UP PP
SOFIWAIE VEBISION ..ottt ettt e e e st e e e st et e e e snbe e e e e snbeeeeennreas
TabIE Of CONLENTS ...eiiiiiieiie ettt e e st e e e st e e s antbeeesabaeeeeane
[(=] F= (o =TT PP PR PPPTPPPPPTPN
F TS0] 0]) o) 1SR
Conventions used iN thiS ManUAaL...........c.ooiiiiiiiiii e
Additional DOCUMENTALION..........uiiiiiiiiiiiiiie it e e e e s ee s
ONline KNOWIEAQEDASEeiiiiiiiiie it
IO I T 1 o Yo [T 1o o P S PPRRRR
1.1 Feature HIghlIghtSeiiiiiie e
2.0 GEttiNG STAMEAeeieeitie e
2.1 JaVaSCHPL ENQINE ...ooiiiiiiiee et
2.2 Enabling Scripting and Editing SCIPLSccoiiiiiiiiiiiieiiiiee e
LCT=T a1 T = TS Y= 1] o T PSPPIt
Editing SCHPLS oo

2.3 CETerm Automation ODJECEScuiiiiiiiiiiiieiiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeesesereaerenene
2.4 IDA ACHON COUEBS......eeiieiiieeee ettt ettt e e e e e e s e bbb e e e e e e e s s nbnbreeaaeeeeas
2.5 OnBarcodeRead SCriPt EVENL..........cviviiiiiiiiiiiiiiiieieeeeeeeeeeeseeeeesseesesessseeeeseeeeseneeennee
WAL AT o = 1 (=T I 1o 1] o PPNt
2.7 CUSIOM SCreen HOt-SPOTS ...ttt e e
2.8 Handling JavaScript Literal ValUuescooiiiiiiiiiiieiiic e
2.8. 1 Array LITETAlS ...
2.8.2 ODJECE LILEIAISeeieeiiiieie et
2.8.3 COMPIEX LItEIalS....ccci ittt
2.8.4 Optional ObJeCt PrOPerti€Suuuiiiiiiiiiiieiiieeieeeiiieeeeesseseseeesssesersresesssrrerera———.

3.0 CETerm AutomMation ODJECES........uuiiiiiiiiiiiiieeieeeeeeeeieeeeeeeeeeeeeeeeeeeeeeseeeeeesessessesesaraeenane
3.1 The CETEIM ODJECT.. .. s
/11 o0 KOO PTPT T OUPUPPPPP
PrOPEILIES ...

3.2 The DEVICE ODJECTuueiiiiii s
117111 o o SRR
(0] 01T 1= TP OUPRTP

TR N T @ ST @ o] 1o S PRSP
/111 o o SRR
(0] 01T 1= PSP

3.4 The BroWSEI ODJECTciiiiiiiiiiiiiie et st
/111 oo R TP TRT RO PPPPR

[0] 0= 4 1T PR OUPUPPPPR

3.5 The EVENE ODJECE .ottt e e e
/111 oo R TP TRT RO PPPPR

[0] o= 4 1T PR OUPUPPPPP

3.6 THE File ODJECL....cciiiiiiei e
/111 o o SRR
(0] 01T 1= PSP

3.7 THE FTP ODJECL...ci ittt st
Y= g T Lo L PP

CETerm Scripting Guide

Page 3

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

PIOPEITIES ...ttt et e e e e e e s e e e
3.8 THE GPS ODJECT ...ttt e e
1Y/ 1]1 o o R PR PPPRR
(0] 0= 4 1= PR
€= T8] o] = PR
3.9 The Keyboard ODBJECLuuviii i
Y= g T Lo L PSPPSR
(0] 0= 4 1= PR
EXAMPIE. e
3.10 The MeSSAQGE ODJECT......uuiiiiiiiiii ettt
1Y/ 1]1 o o R PRRP TP
PIOPEITIES ...ttt e e et e e e e e neeas
3.11 The NetWOIrK ODJECTciuiiiieiiieie et
1711 o o RSP
PrOPEIIES ..o
3.12 The ProCess ODJECTuuuuiiiiii s
171 [o 0 KPP PPP PR OUPPPPPPPN

PIROPEITIES ...ttt ettt e st e s ettt e e e s e e e neeas
3.14 THe SCIre@N ODJECTciiiiiiiieiiiie ettt et
1711 o o RSP
PIROPEITIES ...ttt ettt e st e s ettt e e e s e e e neeas
3.15 The SerialPort ODJECE..........oiiiiiiii e
MEENOTS ... e
PrOPEILIES ...
3.16 The SESSION ODJECT.uuuiiiiiiiii s
MEENOTS ... e
PrOPEILIES ...
3.17 The TextINput ODJECTuei s
117111 o o SRR
PIOPEITIES ...ttt ettt et e e e bt e e s e e e e e nbeas
3.18 The WINAOW ODJECT.cieiiiiiiiiiii ittt
117111 o o SRR
(0] 01T 1= TP OUPRTP
4.0 CETErm SCHPL EVENESveiiiiiieiee ittt e e
4.1 The OnBarcodeRead EVENL..........ccoiciiiiiiiiieeiiie e

EXAMPIE. ... a e e
4.3 The OnNIBMCOMMANT EVENL.......coeeeeieeeeee ettt e e e e e e e e r e e e eanans

CETerm Scripting Guide

Page 4

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Example for Windows MoDbile deVICES...........cooiiiiiiiiiiiiei e 88
4.6 The ONNaVIgatEREQUEST EVENTuiiiiiiiiiiee ittt sbre e e eaee 89
Y1 £= PP PP PP RP TR PPPPP 89
€= Y0] o] = PR 89
4.7 The ONNetChecCKFalled EVENTcociiiiieiie et 90
) 1= GO TTOUP PP PP PR 90
€= Y0] o] = SRR 90
4.8 The ONProgramEXit EVENT......ccciiiiiiiiieicee et e e s e e e e e s s st e e e e e e s s snnntaeeeeeeeesannnnes 91
Y1 £= P PP P PP PRP PR PPPPP 91
e 11 1] o] [T PP PP OU P PP PPPPPPP 91
4.9 The ONProgramStart EVENTooiiiiiiiiiiiiee ittt e e sbe e e s sbreeeeaae 91
Y1 £= PP PP PP RP TR PPPPP 92
e 1 1] o] [TSP P PO TP PP PPPPP PP 92
4.10 The ONSerialPOrEVENT EVENT.......oocuiiiiiiiiiie ettt ee e 92
) 1= . GO SRPPPP PP 92
EXAMPIE.... 92
4.11 The ONSeSSIONCONNECE EVENL.......ccviiiiiiiieie e e e 93
) 1= . GO SSPP P PPPTR 93
EXAMPIE.... 93
4.12 The OnSessionNDISCONNECE EVENTcoioiiiiiiiiicc e 93
Y1 £= T PP PO PP PP PPPPP 94
e 1 1]][TSP PO TP PPPPPPP 94
4.13 The OnSessionNDISCONNECLEA EVENTeiiiiiiiiii ittt 94
Y1 £= T PP PO PP PP PPPPP 94
e 1 1]][TSP P PP OT P PP PPPPPOP 94
4.14 The ONSEeSSIONRECEIVE EVENL....ccoiiiiiiiiiiiie et 95
) 1= . G SRR 95
EXAMPIE. .. 95
4.15 The ONSeSSIONSWILCN EVENTccoiiiiiiiiiiiiee e 96
) 1= . G SRR 96
EXAMPIE.... 96
4.16 The ONSLYIUSDOWN EVENL.....ciuviiiiiiiiiiee ittt ettt e et e et e e e sbaeeeeaae 96
Y1 £= T P PP PP PRP PP PPPPP 97
e 11 1] o] [TP PO RPPTPPPOP 97
4.17 The ONTHYYEIEVENT EVENTviiiiiiiee ettt e e 97
Y1 £= T PP P PP PRP PP PPPPP 97
e 11 1] o] [TP PO RPPTPPPOP 98
4.18 The ONVTCOMMANT EVENT........cooiiiiiiiiiiiiie et e e 98
) 0] €= N G TP PP PPPPPPPTPPPPPPPPPPPPIRt 98
= Y0 0] o] L= TP TR 98
4.19 The ONWaKEUP BEVENL........uiiiiiieiiie et e e e e e e e e e e e s e aanes 99
) 0] €= N G TP PP PPPPPPPTPPPPPPPPPPPPIRt 99
=T 0 0] o] = T TP PP EPTTP PO 100
5.0 Scripting TeChNIQUES AN TIPS «..oiuvveeiiiiiiiee ittt ettt e e e e s nnbeeeesnnneeee s 102
5.1 Expect and ExpectMonitor for Automating Tasks...........cccceiiiiiiiiiiieeiieee e 102
Lo I =T ot RS T ol o A PSPPI 102
5.1.2 EXPECIMONITOr CIASSutviiieiiiiiie ittt et sttt e et e e e 103
5.1.3 Automating Tasks With EXPECTeiiiiiiiieiiiiie e 106
5.2 Presenting Visual Feedback During Script EXECULIONcccooiiiiiiiiiiiiiiiiiieiieee e 107
5.3 Getting USer INPUL 10 @ SCIIPL.....ooieeiiiieeie ettt ettt e e e et e e e e e e e neees 108
5.4 RUNNING @n EXIErNal PrOgram............uiiiiiiiiiiiiiiiiee ettt e e e e e e eee e e e e e s annees 109
5.5 UsIiNg TIiMers t0 RUN SCHPLS ...cciiiiiiiiiiieie ettt e e e e e e s s eaabeeee e e e e e s annees 109

CETerm Scripting Guide Page 5

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

5.6 ACCESSING @ Fle ..
5.7 ACCESSING the REQISIIY ...eeeiiiiiiiiie it
5.8 Controlling a Serial Port from CETEIMccoiiiiiiiiiie e
5.8.1 SerialPort ODJECLSccuviiiiiee i s e e e e er e e e e e e ennes
5.8.2 Setting the POrNAMEcoiiii i e e e
5.8.3 Configuring SerialPOrt PrOPErtiES......cuiici it e e siireer e e e
5.8.4 Using WaitForEvent to Detect Data and State Changescccccvveeeeeiinnns
5.8.5 Using Single Byte REAUS..........cccuiiiieiie et ee e e

5.9 Writing EffiCiEnt SCHPLSeveiiiiiiiieiee e
5.9.1 Use Local VariabIesccooiiiiie e
5.9.2 Encapsulate Code in FUNCLONSoociiiiiiiiiiiiiiiee et
5.9.3 Limit EXECULION TIMIE ...uuiiiiiiiee ettt e e ettt e e e e ettt e e e e e e s e eeeae e e s enenes
5.10 DEDUJGING SCHPLS ...etieiuiiitieiiieie ettt ettt s e e e b e e e e eeeas
5.10.1 SNOW SCIIPL EITOIS .itiiiiiiiiiee ettt ettt e et e e e srneeeeaaee

L O B2 @ 1 N = 4) PRSP
Appendix 1 - IDA ACHON COUESccooiiieieeece e s
APPENAIX 2 = PrOPEILIES ... s
Application Properties ...
DeVviCe Properties. ...
YT (o TN o (0 0 1= 11 PPNt

S Yor=T o a1 o (o] o 1T 1Y SRR
Common SYmMDOIOGY PrOPEITIESccoiuiiiiiiiiiiie it
Codabar Symbology PropertieScoouuiiiiiiiiiieiiieiee e
Code39 SYmDOology ProPErtiESccciiuuiiiiiiiiiee ittt
Code 128 SymbOology PrOPEItIEScocuviiiiiiiiiie it
UPC-EAN General Symbology Properties........ccccccoeiii,
)Y oY] (oo 1A NN F= T 4T PSPt
Appendix 3 — Symbology LabelTypes ..o
APPENIX 4 - CONSLANTS ... s
Battery and Power Management Constants............cccccoeeiiiiie e,
Browser Error CONSTANTS.........oooi i
File ARNDULE CONSIANTS......oiiiiiiiiiiiiiiie e e e e s e e e e e s s nneneaeeeeeeeean
IBM Status CONSLANTSccoeiiiiiiiiieee e
Keyboard CONSTANEScoiuiiiiiiiiiee ettt e e st e e e sbneeeeaaes
MESSAGEBOX CONSLANTSeeviiiiiiiiiriri e e e ettt e e e s e e e e e e e e s
PlaySound CONSLANESuuiiiiiiiiee ittt e et e e s sbe e e e e sbneeeeaaes
REGISTIY CONSLANTSeeiieiiiiiiie ettt e et e e e st e e s sbe e e e e sbneeeeaaes
Service State CONSLANLSeiiiiiiiiiiiii it e e e e e sbe e eea e e e as
Serial POt CONSLANTSuuiiiiiiiei ittt e e e e e e s aebbbaeeaaaeeeas
WiINAOW CONSLANTSeeeiiiieeeiiiiiiee ettt ettt e e e e e s et e e e e e e e s e aanbbbeeeaaeeesannnne
Appendix 5 — Microsoft Virtual-Key (VK) COAES........uuiiiiiiiiiiiiiiiieee i
GlOSSAIY ..ttt e ettt e e e e bt e et e e e e e a bbb e e e e e e e e e e b e baeeaaaeaaan
10 To = PP PU TP

CETerm Scripting Guide

Page 6

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Preface

All of us at Naurtech Corporation constantly strive to deliver the highest quality
products and services to our customers. We are always looking for ways to
improve our solutions. If you have comments or suggestions, please direct these
to:

Naurtech Corporation
e-mail: support@naurtech.com
Phone: +1 (425) 837.0800

Assumptions
This manual assumes you have a working knowledge of:

Microsoft Windows user interface metaphor and terminology.

Stylus based touch screen navigation terminology.

Basic programming and scripting concepts.

Dynamic HTML, the browser DOM, and JavaScript.

Basic operations and requirements of the host applications you want to
access with the Naurtech web browser and terminal emulation clients.

Conventions used in this Manual
This manual uses the following typographical conventions:

¢ All user actions and interactions with the application are in bold, as in
[Session] [Configure]

e Any precautionary notes or tips are presented as follows

Tip: Text associated with a specific tip

e ¥ represents new version specific information
o All text associated with samples is presented as follows.

/*alert*/
OS.Alert ("Script done.");

CETerm Scripting Guide Page 7

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Additional Documentation

Naurtech Scripting is an integral feature of Naurtech Web Browser and Terminal
Emulation Clients. Please refer to the User’'s Manual for detailed installation and
configuration information. The User’'s Manual may be downloaded from the
“Support” section of www.naurtech.com.

Online Knowledgebase

Although we continually strive to keep this manual up to date, you may find our
online support knowledgebase useful for the latest issues, troubleshooting tips
and bug fixes. You can access the support knowledgebase from our website at:

www.naurtech.com - Support - Knowledgebase

CETerm Scripting Guide Page 8

1.0 Introduction

The Naurtech CETerm Clients provide a robust and flexible environment for
Terminal Emulation and Web based applications on a mobile device. Our Clients
are available for most Windows CE platforms including CE .NET 4.2, Windows
CE 5.0, Windows CE 6.0, Windows Mobile 2003, Windows Mobile 5, and
Windows Mobile 6.

Device tailored versions of our Clients are available for most industrial terminals.
These versions integrate the peripherals on each device, such as the barcode
scanner, magnetic stripe reader, RFID reader and Bluetooth printer. Naurtech
Scripting features provide additional control of these peripherals and simplify
tasks such as data collection, validation, and automation.

All Naurtech Clients include one or more Terminal Emulations (TE) and a Web
Browser for a natural migration path from legacy text based TE applications to
newer Web based applications. We will refer to the clients collectively as
CETerm, although the scripting features apply fully to the single emulation
products CE3270, CE5250, and CEVT220.

Scripting features can help the transition to web applications and add capabilities
to older TE applications. Newer web based applications can be presented in a
familiar single-purpose (locked down) configuration which uses keys, the touch
screen, or both for user interactions. Please see our “Web Browser
Programming Guide” for detailed information on using the Web Browser features.

The Naurtech Scripting features automate and extend our clients. We use the
industry standard JavaScript language with Microsoft JScript additions.
JavaScript is the language underlying the most capable and complex
functionality available in web applications today. This new class of web
applications is sometimes referred to as “Web 2.0” using Asynchronous
JavaScript and XML (AJAX). CETerm brings this mature and rich language to
the TE user to provide more productive TE applications. Scripting can also
interact with web browser sessions to enrich and extend existing web
applications on the mobile device.

Scripts can be as simple as editing barcode data before sending to a host or as
complex as parsing an external XML document, applying an XSLT transformation
and returning the result to the host through the TE session. CETerm Automation
Objects are provided to give scripts access to the state of CETerm, the TE
session, hardware components, and access to Windows CE operating system
functions such as network, file and registry operations.

This guide is intended to describe the steps for writing and running scripts and
the features provided through the CETerm Automation Objects. Please consult
the standard references for details on JavaScript (or JScript) syntax and XML.

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

You may also need to consult standard references for HTML syntax, the browser
Document Object Model (DOM), and other aspects of Dynamic HTML if you are
scripting web browser features. Please refer to the Naurtech User’s Manual for
details on basic usage and configuration of the Naurtech clients.

We hope that our Scripting features will enrich and extend the capabilities of your

TE and browser applications. Explore a little deeper and we think you will be
amazed at the possibilities for building powerful business applications.

1.1 FEATURE HIGHLIGHTS

Following are some of the special features in Naurtech Scripting

JavaScript. Naurtech uses the industry standard JavaScript scripting
language. This powerful language is familiar to programmers and non-
programmers world-wide as the core of rich web applications. With JScript,
the Microsoft version of JavaScript, additional features are available such as
the ability to use ActiveX objects in scripts.

On-device Script Editing. Scripts are saved within the CETerm
configuration and can be edited and tested right on the mobile device. Scripts
can be imported and exported via text files on the device as well as loaded
dynamically from files.

. Cross Session Scripting. All Naurtech clients allow up to 5 simultaneous
sessions. Scripts can access and control any or all sessions. For example,
you could extract text from one TE session and insert it into a different TE
session or into a Web application.

Automation Objects. CETerm Automation Objects are available to access
and control the state of CETerm, the state of a TE or web browser session,
the mobile device, and the Windows CE Operating System. Together these
objects provide a rich set of features to simplify routine steps or build complex
applications. For example, you can use an automation object to examine the
current screen contents to trigger special actions.

. Enriched Web Browser Applications. Naurtech Scripting can interact with
a web browser session to enrich existing web applications that were not
written for a mobile device. For example, key bindings can be added to
activate items in the page and scanned barcode or RFID data can be directed
to input elements.

CETerm Scripting Guide Page 10

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

. Workflow Automation. Scripts can be used to automate routine tasks. The
task may be a simple login process or a complex set of steps in your host
application.

. Event Activated Scripts. There are several events within CETerm that will
run associated scripts. For example, when a barcode is read, the script
“‘OnBarcodeRead” will execute and will allow arbitrary processing of the
barcode data before it is submitted to the TE or web browser session.

. Key, Button, and Menu Activated Scripts. Like most other CETerm
actions, scripts can also be tied to any key combination, a toolbar button, or a
context menu.

. Timer Activated Scripts. Scripts can be scheduled to run at a future time or
run periodically.

. Host Activated Scripts. Host applications can also invoke scripts using
special commands within the TE data stream.

CETerm Scripting Guide Page 11

2.0 Getting Started

This section describes some common ways that scripting features can be used
within CETerm. Here we describe the JavaScript engine in CETerm and show
how to load and edit a script. We also show sample scripts which (1) handle
scanner input, (2) auto-login a terminal emulation session, and (3) provide user-
specified “hot-spots” on the screen. Only small code “snippets” are shown. For
complete details see the later sections of this manual.

2.1 JAVASCRIPT ENGINE

The CETerm JavaScript engine is a full JavaScript environment running in
CETerm that provides all the power and familiarity of JavaScript for automating
and extending your data collection process. Strictly speaking, CETerm contains
the Microsoft JScript engine, which has additional capabilities, but we will refer to
it as JavaScript.

The CETerm JavaScript engine is separate from the JavaScript engines which
are available in web browser sessions, but the two engines can communicate,
exchange data and send commands. Unlike the web browser engine, the
CETerm engine runs independently of any TE or browser session and can
interact with all sessions. This persistence allows the CETerm engine to
maintain state throughout a data collection workflow.

The CETerm script engine runs as part of the CETerm user interface and when
processing a script, the device keys and screen may be unresponsive. Think of
the script engine as a virtual user which can examine the screen and send input.
There are several techniques to write asynchronous scripts and to show
feedback to the user and get user input while a script is running.

2.2 ENABLING SCRIPTING AND EDITING SCRIPTS

Scripting is disabled by default. To enable scripting, open the configuration
dialog

[Session] ->[Configure] ->[Options]->[Configure Scripting]

General Settings
On the General tab, check the Enable box and check Show Script Errors. You
may also want to enable file and registry access permission or program
launching if you need these features. The Re-Initialize button on this tab can be
used if you have made changes to the permissions or your scripts and you wish
to load the changes. The re-initialization does not take place until the dialog is
closed.

oK [|
Gereral :Scrint5|
[]Enatle | Re-lninalize |
Script Timeout (sac): Wj

v | Show Script Errors
Allow FilejReagistry Read
Allows FilejRegstry Write
Allows Program Launch

The Script Timeout variable limits the duration of script execution. This limit is
useful when developing new scripts and as a safeguard against a script with an
“infinite loop”. A value of 0 will disable the timeout. During execution, a script
can modify the timeout value and reset the timer to allow additional execution
time.

Editing Scripts
Scripts are edited on the Scripts tab. There are 64 script slots. The size of the
script in each slot is limited to about 260,000 characters (about one-half
megabyte under Windows CE). Scripts can also be loaded dynamically from
files. A script slot will usually contain function definitions, which will be loaded into
the engine, or executable statements such as function calls which may be bound
to a key, toolbar, or menu.

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Scripting (oK) (% |
General | Scripts

Mame | Flags | Script =
1 I*onDacumentDar

I*OnSessionCanne

IFonSkylusDown®,

OB B n) [R I N]

After selecting a script slot and tapping the Edit button, an Edit Script dialog will
appear. The edit dialog allows Import and Export of scripts. For initial script
development it may be easier to edit on your desktop PC, copy the script to the
device, and Import the script. You can use any programming editor that does
not insert text formatting commands. Even Notepad will work fine, but do not edit
scripts with Microsoft Word. Smaller editing changes are easily made on the
device.

Edit Script - OnBarcodeRead (b

k+OrBarcodeRead*|
function OnBarcodeRead! session, data,

[[»

/! Manipulate barcode data here

/i 3end barcode to emulator
CETerm.SendText] data, session);

4]

4] il [[»
D Load &t Startup
| Imnpork | | Expork | | 0] 4 |

The checkbox Load at Startup should be checked for all scripts that contain
function definitions that you want to have available in the script engine. The
checkbox should not be checked for slots that contain scripts that are bound to
keys or other activations. Load at Startup should be checked for all event
handler definitions. All scripts marked Load at Startup will be loaded into the
script engine when it starts with CETerm startup, or when Re-Initialize has been
pressed on the General tab.

After importing or editing a script, you may want to tap the Test/Load button. If
the script engine was previously enabled, the script will be executed. If the

CETerm Scripting Guide Page 14

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

current script is a function definition, it will be checked for correct syntax and will
be made available to the script engine. If the current script contains executable
statements or is a function call, it will simulate activating the script. In general,
you do not want to use Test/Load for executable statements.

Remember to tap Test/Load or Re-Initialize (with Load at Startup checked)
after making changes to a script, if you want those changes loaded into the script
engine. Also, Test/Load will not work if you have just checked Enable but not
yet accepted the configuration changes.

The Template button displays a list of script templates which correspond to the
scripting event handlers. Select a template and tap OK to have it replace the
current contents of the script being edited. The template scripts show some of
the ways to use CETerm Automation Objects.

Load Script Template @

Select ternplate and tap Ck;

OnBarcodeRead]) - Process barcode read
OnDocumentDonel) - Run after web docy
OnkavigateError() - Fun if navigation Faild
OnMetCheckFailed() - Run after network,
onSessioniConnect() - Run after connect
OnElnessionDiscunnectl() - Run after dislccun
4 i Y

[[»

4]

CETerm Scripting Guide Page 15

2.3 CETERM AUTOMATION OBJECTS

The CETerm Automation Objects provide access to the running CETerm
application, session screens, device hardware, the Windows CE operating
system, and other features. For example the command

CETerm.PostIDA("IDA SESSION sS1", 0);

within a script would switch CETerm to Session 1 if another session was
currently active. Automation Objects can give access to the browser Document
Object Model (DOM) of connected web sessions and the text on terminal
emulation sessions. The IDA action codes are described briefly in the following
section.

The CETerm Automation Objects are similar to ActiveX controls that are used in
web pages, but they do not require any special creation operations prior to use.
In fact, the same CETerm Automation Objects are accessible from both the
CETerm JavaScript engine and the web browser JavaScript engines.

2.4 IDA AcTiON CODES

An IDA Action Code is a special value that is used to invoke a device action,
program action, or emulator action within the Naurtech Web Browser and
Terminal Emulation Clients. IDA Action Codes can invoke special keys under
terminal emulation, sound a tone, connect a session, or show the SIP. There
are many IDA codes and these are documented in Appendix 1 of this manual.
Almost any action which can be invoked by a KeyBar or assigned to a hardware
key can be invoked by an IDA code. IDA codes can be submitted to CETerm in
several different ways, under both scripting and the web browser.

2.5 ONBARCODEREAD SCRIPT EVENT

CETerm generates several script events during operation. If there is a
corresponding event handler defined within the CETerm script engine, then that
handler will be invoked. The "OnBarcodeRead" event is a good example. The
OnBarcodeRead event handler can intercept and pre-process barcode scan data
using the full power of JavaScript before sending the data on to the TE or
browser session.

The OnBarcodeRead handler could do something simple, such as pre-pending
zero digits for short barcodes, or something complex such as splitting an
Automotive Industry Action Group (AIAG) B-10 barcode and putting different
parts into different fields on an IBM 5250 emulation screen.

Here is the OnBarcodeRead template that can be loaded in the script edit dialog

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

/* OnBarcodeRead */
function OnBarcodeRead (session, data, source, type, date, time)

{

// Manipulate barcode data here

// Send barcode to emulator
CETerm.SendText (data, session);

// Return 0 to handle barcode normally
// Return 1 if handled data here
return 1;

}

This handler simply passes the barcode data on to the current session using the
“SendText” method. The return value of 1 tells CETerm not to pass on the
barcode data with the usual wedge technique.

The following OnBarcodeRead handler will prefix 3 zeros to any 8 digit barcode
and pass other barcodes unchanged

/* OnBarcodeRead */
function OnBarcodeRead (session, data, source, type, date, time)

{
// Prefix zeros to short barcodes
if (data.length == 8)
{
data = "000" + data;

}
// Send barcode to emulator
CETerm.SendText (data, session);

// Return 0 to handle barcode normally
// Return 1 if handled data here
return 1;

If the OnBarcodeRead handler is defined, it will override any “ScannerNavigate”
handler defined in a web page META tag. The following OnBarcodeRead
handler will pass the scan on to the ScannerNavigate handler for a web browser
in session 2

/* OnBarcodeRead */
function OnBarcodeRead (session, data, source, type, date, time)
{
// Don’t process for browser session
if (session == 2)
{
// Return 0 to handle barcode with ScannerNavigate
return 0;

CETerm Scripting Guide Page 17

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

}

// Prefix zeros to short barcodes
if (data.length == 8)
{

data = "000" + data;
}
// Send barcode to emulator
CETerm.SendText (data, session);

// Return 1 if handled data here
return 1;

The following OnBarcodeRead handler will split any barcode containing an ASCII
Linefeed (LF = Ox0A) character and terminated with an ASCIl ENQ (ENQ = 0x05)
into two parts. The first part is put into the current IBM 5250 field and the second
part into the next field and then submitted to the IBM host. This technique is
used to login a user with a Code39 barcode in full-ASCIl mode. All other
barcodes are passed on for normal input

/* OnBarcodeRead */
function OnBarcodeRead (session, data, source, type, date, time)

{

// Look for Full-ASCII Code 39 (LF = 0x0A) to mark Field Exit

var 1lfIndex = data.indexOf ("\xO0A");

if (1lfIndex >= 0)
{

var passwordStart = 1fIndex + 1;

// Look for Full-ASCII Code 39 (ENQ = 0x05)
var englndex = data.lastIndexOf("\x05");

if (engIndex >= 0)

{
// NOTE: Using substr to extract user
// Send User

CETerm.SendText (data.substr(0, 1lfIndex), session);

// Send field exit to advance cursor
CETerm.SendIDA("IDA FIELD EXIT", session);

// Send Password
// NOTE: Using substring to extract password

CETerm.SendText (data.substring(passwordStart,

englIndex),

// Submit form
CETerm.SendIDA("IDA ENTER", session);

// All scan data handled here
return 1;

session);

CETerm Scripting Guide

Page 18

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

}

// Handle scan data in normal way
return 0;

The type argument to OnBarcodeRead contains the labeltype of the barcode.
This labeltype is related to the barcode symbology but usually a little more
informative. The values are dependent on the hardware manufacturer but for
most devices are the same as the Symbol LABELTYPE. The type is a small
integer value representing a printable ASCII character (See Appendix 3). The
source argument is the name of the scanner that read the barcode and is
typically unused. The date and time are text strings representing the time of
the read.

2.6 AUTOMATED LOGIN

Automating the host login process is a common task to speed workflow. CETerm
contains a Macro record and playback that is usually used for this task. One
limitation of the Macro feature is that it will only support a single session auto-
connecting when CETerm starts. The scripting feature allows much more power
and flexibility for automating the login or any complex or repetitive process.

Most auto-login features are based on a “prompt-and-response” mechanism that
waits for text from the host (the prompt) and then sends some text (the
response). The “expect” script and “ExpectMonitor” class provide the “prompt-
and-response” mechanism within CETerm. The response is usually some simple
text, but with the ExpectMonitor, it can be a script itself. The ExpectMonitor is
also a good example of using script timers to perform long tasks. The full listing
of the “expect” script and “ExpectMonitor” can be found in Section 5.1.

When “expect” is used for auto-login, it is activated within the
“OnSessionConnect” event handler. Here is a simple example of an
OnSessionConnect handler

/* OnSessionConnect */
function OnSessionConnect (session)
{

// Set login information

var myusername = "joeuser";

var mypassword "secret";

CETerm Scripting Guide Page 19

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

var waittime = 8000; // Milliseconds waiting for each text

// Only login session 1
if (session == 1)
{
// Look for "login" then "password"
expect (session, waittime, "Login", myusername + "\r",
"Password", mypassword + "\r");

The expect arguments are session for the session index, waittime for the
milliseconds waiting for each expected text, followed by pairs of expected text
(prompt) and corresponding action(response). If the action is text, it is simply
sent to the host when appropriate. There can be any number of (expected text,
action) pairs as arguments. The expected text can be plain text or a regular
expression.

For a case-insensitive match of “Login”, an appropriate regular expression could
be /login/i. Regular expressions use the slash character as a delimiter
rather than double-quote characters. The ‘i' indicates a case-insensitive match.

A more complex action can contain an anonymous function definition such as

var beepMe = function (session) {CETerm.SendIDA ("IDA BEEP LOUD", 0);
CETerm.SendText ("me\r", session);

}

Combining these changes into the expect call would give

expect (session, waittime, /login/i, beepMe,
"Password", mypassword + "\r");

You might wonder why the SendIDA call in beepMe has a session index of O
whereas SendText has the actual session argument. In this case we know that
the beep action is not session specific and does not need to be sent to a specific
session. In general, it is always OK to specify a session and it will be ignored for
actions that do not require a value.

CETerm Scripting Guide Page 20

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

2.7 CUSTOM SCREEN HOT-SPOTS

A “hot-spot” is an area on a terminal emulation screen that is activated by taping
with your finger or the stylus. CETerm supports several pre-defined hot-spots for
TE sessions. With scripting, it is possible to define custom hot-spot behaviors.
Custom hot-spots use the “OnStylusDown” event handler. Browser sessions do
not support the OnStylusDown event because equivalent behavior can be
implemented in HTML. You may need to disable the pre-defined hot-spots in
CETerm because they will be triggered before a custom hot-spot.

The hot-spot action can depend on the screen contents in an area or simply be
tied to a screen area. The following OnStylusDown handler can be loaded from
the script templates

/* OnStylusDown */
function OnStylusDown (session, row, column)
{
// Look for custom hot-spot
var screen = CETerm.Session(session).Screen;
var text = screen.GetTextLine(row);
if (text.match(/beep/i))
{
O0S.PlaySound("default.wav", 0);

}

This hot-spot will play a sound if the line touched contains the word “beep”. The
following hot-spots will activate VT function keys if the user touches in the
specified rows and columns. In this case, the screen can show a box drawn with
VT line drawing characters and text inside each box. With such a display, you
can effectively create large glove-friendly on-screen buttons in TE.

/* OnStylusDown */
function OnStylusDown (session, row, column)
{
// Buttons are on rows "start" through "end"
var buttonrowstart = 9;
var buttonrowend = 13;
var IDA = "IDA NONE";

// Buttons are "buttonwidth" columns wide

// Leftmost button is #1

var buttonwidth = 5;

var button = Math.floor ((column + buttonwidth - 1) /
buttonwidth) ;

if (row >= buttonrowstart && row <= buttonrowend)

{
switch (button) {

CETerm Scripting Guide Page 21

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

case 1: IDA = "IDA VT PF1"; break;
case 2: IDA = "IDA VT PF2"; break;
case 3: IDA = "IDA VT PF3"; break;
case 4: IDA = "IDA VT PF4"; break;

}

// DEBUG: Uncomment next two lines for testing
//0S.Alert ("row=" + row + " col=" + column +
// " button=" + button + " IDA=" + IDA);

if (!IDA.match("IDA NONE"))
{

// Send command
CETerm.PostIDA(IDA, session);

}

You may have noticed by now the use of Post IDA in some cases and SendIDA
in other cases. SendIDA is a synchronous activation of an action whereas
PostIDA is an asynchronous or deferred activation. In general it is always better
to use PostIDA unless you must wait for the action to complete before
proceeding in the script. The post action is similar to the “PostMessage” function
in Windows programming and the send is similar to the “SendMessage” function.
See the CETerm automation object for more detalils.

2.8 HANDLING JAVASCRIPT LITERAL VALUES

The Automation Objects described in Chapter 3 often return JavaScript literal
values when the results are complex. For example, JavaScript literals are
returned when the results are lists of files, lists of processes, or memory
information.

A JavaScript literal is a text string which describes the contents of an array or
object. These literals are easily converted into regular JavaScript arrays or
objects for use by your scripts. This concept of data representation is similar to
the highly popular “JavaScript Object Notation” (JSON, www.json.org) data
interchange used by web applications. The results in CETerm do not follow the
strict JSON format, but are handled in nearly identical ways.

WARNING: The format and content of JavaScript literals returned by various
CETerm object may vary depending on hardware types or OS
versions. They may also vary with different CETerm versions. You
should review the raw form of the returned values on the devices you
plan to use and program defensively to allow for variations. See the
example below for details.

CETerm Scripting Guide Page 22

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

2.8.1 Array Literals

Here is a simple JavaScript statement that uses an array literal to create an array

and assign it to a JavaScript variable:
var myArray = [2, 4, 6 1;

myArray[2] now has the value 6.

If a CETerm object returned the same array literal, then you would use the
JavaScript eval function to assign the array to a JavaScript variable:

var arrayResult = "[2, 4, 6]";
var myArray = eval(arrayResult);

myArray[0] now has the value 2.

2.8.2 Object Literals

Here is a simple JavaScript statement that uses an object literal to create an

object and assign it to a JavaScript variable:
var myObject = {name:'fred', attributes:0x21, size:12341234};

myObject.attributes has the value 0x21.

If a CETerm object returned the same object literal, then you would again use the
JavaScript eval function to assign the object to a JavaScript variable. Because
the curly-bracket operator may delimit either a block of statements or an object
literal, you must convert object literal strings in a slightly different way:

var objectResult = "{name:'fred', attributes:0x21, size:12341234}1";
var myObject = eval(" (" + objectResult + ")"); // note parenthesis

// or the preferred format
eval ("var myObject=" + objectResult);

myObject.name now has the value ‘fred’.

2.8.3 Complex Literals

A complex literal may consist of nested array and object literals, but it is treated
in the same manner. In general you should use the eval syntax shown for the
object literal for all types of array, object, or complex literals.

CETerm Scripting Guide Page 23

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

2.8.4 Optional Object Properties

The object literal returned as a result may not always contain all possible
properties. This is true for the File.GetList() method. The various file timestamps
are not always present. Your JavaScript code must check these values or be
prepared to handle the “undefined” value that can result.

When first developing your application, it can be helpful to display the literal
within a message box using OS.Alert() in order to review the contents that are
returned in your environment. You can then tailor your JavaScript to process the

contents.
var getListResult = OS.File.GetList("/System/*");
OS.Alert ("GetList results:\n" + getListResult);

Following is a sample of one technique to test for a property before using the
property. This technique uses the JavaScript Object.hasOwnProperty() method
to check for existence. The File.GetList() method may return a result which is
missing the lastAccessTime for directory entries

// Sample GetList literal result

[{name:"myApp.cab", attributes:0x21,

creationTime:new Date(2006,11,15,11,51,41,480),
lastAccessTime:new Date(2007,7,27,3,27,41,0),
lastWriteTime:new Date (2008,6,15,0,29,50,0), size:2455494},
{name:"myconfig.ini", attributes:0x21,

lastAccessTime:new Date(2007,7,27,3,27,18,0),
lastWriteTime:new Date (2008,6,15,0,29,48,0), size:12564},
{name:"AppDirectory", attributes:0x10,

lastWriteTime:new Date (2008,2,11,12,29,49,0), size:1024}]

var getListResult = OS.File.GetList("/System/*");
eval ("var fileArray=" + getListResult);
var 1i;
var file;
var time;
for (i=0; i<fileArray.length; ++1i)
{
file = fileArrayl[il];
if (file.hasOwnProperty("lastAccessTime"))
{
time = file.lastAccessTime;
OS.Alert ("Last Access in " + time.getFullYear());

CETerm Scripting Guide Page 24

3.0 CETerm Automation Objects

This section describes the Automation Objects available to the CETerm script
engine. These objects provide access to the running CETerm application, TE
session screens, the Windows CE operating system, hardware device
components, and other features for developing rich applications.

The automation objects are accessed in a hierarchical manner similar to the
Document Object Model (DOM) of a webpage. The three top-level objects are
CETerm, Device, and 0S. The CETerm object provides access to application
specific features. The Device object provides access to device hardware such
as keyboards and serial ports. The 0S object provides access to generic
Operating System (OS) features such as files, events, processes, the network,
and the Windows registry.

Automation objects provide some of the same functionality provided by the
Window obiject in the web browser. For example, the familiar Window methods
alert () and setTimeout () are provided by the 0S.Alert () and
CETerm.SetTimeout () methods.

Many of the automation objects on the OS hierarchy give direct access to low-
level Windows CE features. Although powerful, caution should be exercised
when using these features. We provide the basic APl documentation in this
document. More information and useful discussion can be found by searching
the Microsoft msdn.microsoft.com website. Below, we suggest such searches
and provide relevant keywords.

The top-level CETerm objects are described in the first 3 sections below,
followed by all other objects in alphabetical order.

3.1 THE CETERM OBJECT

The top-level CETerm object gives access to CETerm features, settings, and
session state. This section documents the methods and properties of the
CETerm oObject.

Methods
The following methods are available
Method Action
AbortScript Abort the currently running script

ClearAllTimers Clear all SetTimeout and SetlInterval timers

Clearinterval Clear a recurring interval timer

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

ClearTimeout Clear a one-time timer

GetProperty Get a property value

PlaySound Play a tone or wave file on the device (deprecated)
PlayTone Play a tone on the device (deprecated)

PostIDA Send a command to a session (asynchronous)
RunScript Run a script (called from a web browser only)
SendIDA Send a command to a session (synchronous)
SendText Send text to a session

Session Get a session object

Setlnterval Create a recurring interval script execution timer
SetProperty Set a property value

SetScriptTimeout | Set the current script execution timeout
SetTimeout Create a one-time script execution timer

AbortScript ()

Stop the currently executing script.

ClearAllTimers ()

Clear all recurring interval timers and one-time timers.

Clearinterval (intervalTimerID)
Clear the specified recurring interval timer.

ClearTimeout (timerlID)
Clear the specified one-time timer.

value = GetProperty (propertyName)

Return the named property value. This may be a device property, application
property, or session property. See Appendix 2 for a list of available properties.
Returns the JavaScript “undefined” value if the requested property cannot be

found.

PlaySound (sound) (deprecated)

Play a tone or wave file on the device. This PlaySound is not the same as the
Windows PlaySound of the OS object. This method will accept a wave file name

CETerm Scripting Guide

Page 26

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

but it will also accept a “tone specifier” as a string to support this legacy feature in
the Naurtech Web Browser. New application should use the OS.PlaySound or
OS.PlayTone commands. Use the complete file path if the wave file is not in the
\Windows directory.

If the handheld device contains a programmable tone generator, the sound
parameter may also be a string which defines a sequence of tones to play. The
syntax is given below:

“vvfffddd” — where

vV — is the volume 01-10

fff — is the frequency in 10’s of MHz, 000-999

ddd — is the duration in 10’s of milliseconds, 000-999

Multiple tone specifications can be concatenated.

PlayTone(volume, frequency, duration) (deprecated)

Play a tone if supported by the handheld hardware. This method is provided for
backward compatibility within the web browser. New application should use
OS.Playtone() which provides the same functionality.

volume — is the volume 00 -10 (O is off, 10 is loudest)
frequency — is the frequency in Hz.
duration — is the duration in milliseconds.

PostIDA (IDASymbolicName, session)

PostIDA submits an IDA action command and directs it to the specified session.
Valid session values are 1 to MaxSession. The special session value of 0 will

send the command to the current session. Some IDA commands act at a global
level and ignore the session variable. See Appendix 1 for IDA Symbolic Names.

The PostIDA command will return before the action executes. In general, the
IDA action will not be applied until after the current script execution ends. We
recommend using PostIDA rather than SendIDA. There are only rare situations
when SendIDA must be used.

status = RunScript (script)

Run the specified script in the CETerm engine. This method must only be used
when the CETerm object is referenced from the web browser script engine. In
general, it is better to use PostIDA with an IDA_SCRIPT_xx action to run a pre-

CETerm Scripting Guide Page 27

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

defined script from the web browser. To execute a script contained in a string
from the CETerm engine use the JavaScript “eval()” method.

SendIDA (IDASymbolicName, session)

SendIDA sends an IDA action command and directs it to the specified session.
Valid session values are 1 to MaxSession. The special session value of 0 will
send the command to the current session. See Appendix 1 for IDA Symbolic
Names.

The SendIDA method will attempt to complete the action before returning. We
recommend using PostIDA rather than SendIDA. There are only rare situations
when SendIDA must be used. For example, SendIDA will be needed if you
need to invoke IBM field actions, such as Field Exit, between sending text to an
IBM session with SendText.

SendText (text, session)

SendText sends a text string to the specified terminal emulation session. Valid
session values are 1 to MaxSession. The special session value of O will send the
command to the current session. This command is synchronous and CETerm
will act on each character before this method returns. SendText will not send
text to a browser session. To change text into a browser page, use the
Browser.Document reference and assign the text directly to the desired page
element.

The text string may include IDA symbolic names between backslash characters
\'. The IDA codes will be interpolated as the text is sent. For example,
“‘username\\IDA_FIELD_ EXIT\\secretpassword”. Note that each backslash has a
preceding backslash because it is the JavaScript “escape” character. To put a
single literal backslash in a string you precede it with another backslash.

object = Session (index)
Return the corresponding Session object. Valid index values are 1 to
MaxSession. The object is returned even if the session is not connected.

interval TimerID = Setlnterval (scriptExpression, delayMillisec)

Set a recurring interval timer to execute the scriptExpression after each delay of
delayMillisec. This method returns an ID that should be saved in a global variable
for later use with Clearinterval if needed. Other scripts may run while waiting for

CETerm Scripting Guide Page 28

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

this timer. The scriptExpression is a string containing the script, but is commonly
a function invocation, such as “myTimerFunction(3, ‘alert’);”

Timers are especially useful with complex or long-running scripts. Interval timers
can be used to perform simple update tasks. One-time timers should be used in
preference to interval timers. In general, scripts should perform a short action
and exit. With a complex script such as a state-machine, the state can be
maintained in global variables and the script re-activated periodically to check for
state transitions and perform actions. See the “expect” script and
“‘ExpectMonitor” class in Section 5.1 for an example of the use of a timer.

status = SetProperty (propertyName, propertyValue)

SetProperty will assign the given value to the named property. See Appendix 2
for a list of available properties. The returned status is O for success, non-zero
for failure.

SetScriptTimeout (millisec)

Set the maximum script execution time. This value may be updated during a
running script. If updated, the new timeout will apply starting at the time of the
change. A value of O will disable the timeout.

The script timeout prevents a faulty script from locking-up CETerm. For
example, if a script enters an “endless loop”, the timeout will eventually force the
script to abort.

timeoutTimerID = SetTimeout (scriptExpression, delayMillisec)

Set a one-time timer to execute the scriptExpression after a delay of
delayMillisec. This method returns an ID that should be saved in a global variable
for later use with ClearTimeout if needed. Other scripts may run while waiting for
this timer. The scriptExpression is a string containing the script, but is commonly
a function invocation, such as “myTimerFunction(3, ‘alert’);”

Timers are especially useful with complex or long-running scripts. Timers can
also be used to defer an operation which is not possible within an event handler.
One-time timers should be used in preference to interval timers. In general,
scripts should perform a short action and exit. With a complex script such as a
state-machine, the state can be maintained in global variables and the script re-
activated periodically to check for state transitions and perform actions. See the
“expect” script and “ExpectMonitor” in Section 5.1 for an example of the use of a
timer.

CETerm Scripting Guide Page 29

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Properties
The CETerm object has the following properties.
Property Description Values
ActiveSession | Current active session. (read only) 1-

MaxSession

MaxSession Maximum session index. (read only) 5
Message Returns message object. (read only) | object
Textinput Return text input object. (read only) object

3.2 THE DEVICE OBJECT

The top-level Device object provides access to device components such as the
keyboard and serial ports. This section documents the methods and properties
of the Device object.

Not all features of the Device object will be available on all devices. For
example, GPS, RFID, Speech, and Trigger functionality will depend on the
hardware make, model, and operating system version.

Methods
The following methods are available

Method Action

GetBatteryInfo Get the battery charge information.

GetPowerState Get the current power state for a device component.

PowerStateRequest | Request a change of the power state of a device
component.

ResetldleTimer Reset the Windows idle timer to prevent a suspend.

SerialPort Return the requested SerialPort object.

Vibrate Activate the vibrator.

CETerm Scripting Guide Page 30

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

batteryStatus = GetBatterylInfo ()

Get the battery charge information. Returns a JavaScript object literal with the
information in the form:

{ACLineStatus:0x1,

main: {flags:0x1l, lifePercent:100, 1lifeTime:4294967295,
fulllLifeTime:4294967295, voltage:4178, current:O0,
averageCurrent:0, averagelnterval:O0,
mAHourConsumed:0, temperature:3.8, chemistry:0x4},

backup:{flags:0x1, lifePercent:100, 1lifeTime:4294967295,
fulllLifeTime:4294967295, voltage:2797}}

See Section 2.8 for details about handling JavaScript literals. See Appendix 4 for
status and flag definitions. Times are in seconds, voltages are in millivolts, and
currents are in milliamperes. Depending on the device, some values may be
invalid. When a battery is under charge (ACLineStatus:0x1) some values may
be invalid. Return null if battery information is not available. Search
msdn.microsoft.com with keyword “SYSTEM_POWER_STATUS_EX2” for more
details.

status = GetPowerState (deviceName)

Get the power state of the specified device component. The valid device names
depend on the hardware. Common devices are serial ports (“COMx:”) and the
backlight (“BKL1:”). Return values are 0 — full on, 1 — low on, 2 — standby, 3 —
sleep, 4 — off, or -1 if unknown. Check the Device property LastError for more
error information.

status = PowerStateRequest (deviceName, powerState)

Request the OS to set the power state of a device component. The state is one
of the 5 values listed under GetPowerState. See Appendix 4 for state constants.
Return O for success, non-zero for failure. Check the Device property LastError
for more error information.

ResetldleTimer ()

Resets the system idle timer. The idle timer is used to determine when to enter a
suspended state. Resetting the timer will typically prevent the device from
suspending.

CETerm Scripting Guide Page 31

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

object = SerialPort (index)

Return the corresponding SerialPort object. Valid index values are 0 through 9.
See Chapter 5 for details on how to use the SerialPort object.

status = Vibrate(durationMillisec)

Activate the device vibrator for the specified duration in milliseconds. Return O
on success or -1 otherwise. For most devices, this method is synchronous and
will not return until the vibration is complete.

Properties
The Device object has the following properties.

Property Description Values
GPS Returns the GPs object. This object object
provides access to GPS actions. (read
only)
Keyboard Returns the Keyboard object. This object | object
provides access to keyboard actions.
(read only)
RFID Returns the RFID object. This object object

provides access to the RFID device. The
RFID obiject is available only in select
builds of CETerm and is documented
separately. (read only)

Speech Returns the speech object. This object object
provides access to the Speech features.
The Speech object is available only in
select builds of CETerm and is
documented separately. (read only)
Trigger Returns the Trigger object. This object | object
provides access to hardware trigger
features. The Trigger object is available
only for limited devices and is
documented separately. (read only)
LastError Returns the last Windows error related to | unsigned
the Device object. (read only) integer

CETerm Scripting Guide Page 32

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

3.3 THE OS OBJECT

The top level OS object provides access to operating system resources such as
files, processes, windows, and the registry.

Many of the automation objects on the OS hierarchy give direct access to low-
level Windows CE features. Although powerful, caution should be exercised
when using these features. We provide the basic API documentation in this
document. More information and useful discussion can be found by searching
the Microsoft msdn.microsoft.com website. Below, we suggest such searches
and provide relevant keywords.

Methods
The following methods are available

Method Action

Alert Show the user a text message. (synchronous)

Beep Play a default beep tone.

Exec Run a separate program. (deprecated, use Process object)
GetErrorMessage | Get a text error message for a Windows CE error value.
KillProcess Stop a running process started with Exec. (deprecated)
MessageBox Display a standard Windows MessageBox.

PlaySound Play a wave file on the device.

PlayTone Play a tone on the device.

Sleep Pause the script execution.

StopSound Stop an asynchronous playing PlaySound sound.
WaitForProcess | Wait for the specified process to end. (deprecated)

Alert (message)
Show the user a simple text message and wait for them to press OK.

Beep ()

Sound the default Windows beep tone.

status = Exec(programFile, commandLine)
Start the specified program. Return O for success, non-zero for failure.

CETerm Scripting Guide Page 33

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Use GetErrorMessage() to convert a non-zero status to a text message. You
should immediately save the property LastExecProcess after a successful Exec
call to obtain the process ID for later use in WaitForProcess or KillProcess.

The programFile should be a fully qualified filename. This function is
deprecated. Full process control is now provided by the Process object.

text = GetErrorMessage (error)

Return a descriptive text message for the specified Windows error. If the value is
unknown, return the error hexadecimal value as text.

status = KillProcess(processiD)

Attempts to stop the specified process. Returns 0 for success, non-zero for
failure. You must obtain the processID from the property LastExecProcess
immediately after a successful Exec call. This function is deprecated. Full
process control is now provided by the Process object.

result = MessageBox (message, title, flags)

Display a standard Windows message box. The title is displayed in the message
box title bar. The flags are used to specify the icon and buttons that are visible.
Return a value corresponding to the button pushed to close the dialog. See
Appendix 4 for flag definitions. Search msdn.microsoft.com with keywords
“‘messagebox ce” for more details.

PlaySound (sound, flags)

Play a wave file on the device. This PlaySound is not the same as the
CETerm.PlaySound(). Use the complete absolute file path if the wave file is not
in the \Windows directory. The flags control the way the sound is played. See
Appendix 4 for flag definitions. Returns true on success, false otherwise. Search
msdn.microsoft.com with keywords “playsound ce” for more details.

PlayTone (volume, frequency, duration)

Play a tone if supported by the handheld hardware. New applications should use
this method and avoid CETerm.Playtone().

volume — is the volume 00 -10 (O is off, 10 is loudest)
frequency — is the frequency in Hz.
duration — is the duration in milliseconds.

CETerm Scripting Guide Page 34

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Sleep (delay)
Delay script execution for specified milliseconds.

result = StopSound ()
Stop any currently playing sound. Returns 0 on success.

status = WaitForProcess(processiD, timeout)

Wait for the specified process to exit. Return after timeout milliseconds even if
process is still running. Return O if process has exited, non-zero for timeout or
failure. You must obtain the processID from the property LastExecProcess
immediately after a successful Exec call. This function is deprecated. Full

process control is now provided by the Process object.

Properties
The 0s object has the following properties.

Property Description Values

ClipboardData Provides access to the current Windows | string
clipboard “cut and paste” buffer.
Assigning to this property will set the
clipboard contents.

Event Returns the Event object. This object object
provides access to the Windows events
used for synchronization. (read only)

File Returns the File object. This object object
provides access to the Windows file
systems. (read only)

LastError Returns the last Windows error related to | integer
the OS object.

LastExecProcess | Returns the process ID of the last unsigned
program started via Exec. (read only) integer
(deprecated)

LastOSError Returns the last Windows OS error. (read | integer
only).

MemoryStatus Returns a summary of the Windows object literal
memory available. (read only) string

CETerm Scripting Guide

Page 35

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Property Description Values
Network Returns the Network object. This object object
provides access to Windows network
features. (read only)

Process Returns the Process object. This object object
provides control of running Windows
programs. (read only)

Registry Returns the Registry object. This object | object
provides access to the Windows registry.
(read only)

TickCount Returns the current tick count from unsigned
Windows. This provides a millisecond integer, O-
resolution time source. (read only) OXFFFFFFFF

Window Returns the Window object. This object object

provides access to current windows of
running programs. (read only)

MemoryStatus

The return value is in the form of a JavaScript object literal. See Section 2.8 for
information on handling literal return values.

For example the following object literal shows results from a Windows CE 5.0

device:
{utilization:22, totalRAM:58613760, availableRAM:46153728,
totalStorage:29061120, availableStorage:17583852}

Not all devices will return all values, so you should check for the existence of a
value before use. See Section 2.8 for details.

TickCount

The return value is the number of milliseconds since the device booted,
excluding any time that the system was suspended. TickCount starts at zero on
boot and then counts up from there. The count will rollover to zero if the system
is run continuously for 49.7 days. The maximum value is OXFFFFFFFF.

When using TickCount, beware that rollover may occur. Comparing tick values
directly does not always yield the correct results. By design, TickCount may
have a drift of 1 second per 2 hours. Do not use TickCount for drift sensitive
applications.

CETerm Scripting Guide Page 36

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

3.4 THE BROWSER OBJECT

The Browser object gives access to a web browser session. The Browser
object is a property of the Session object; CETerm.Session (i) .Browser.
This section documents the methods and properties of the Browser object.

Methods
The following methods are available

Method Action

AddMetaltem Add a CETerm <META> element to the current web page.
Navigate Navigate to specified URL.

RunScript Run a script in the web browser JavaScript engine.

result = AddMetaltem (target, content)

Add a CETerm <META> tag element to the current web page. This is typically
used to add custom <META> elements which define key mappings or other
custom behaviors. See the Naurtech Web Browser Programming Guide for
documentation on custom <META> tags. Return O for success, non-zero for
failure. After adding META elements that change the values of information icons
you may need to use CETerm.PostIDA(“IDA_INFO_REFRESH”, 0) to apply the
changes.

result = Navigate (URL)

Navigate the browser session to the specified URL. Return O for success, non-
zero for failure.

result = RunScript (script)

Execute the specified script in the browser JavaScript engine. Return O for
success, non-zero for failure.

CETerm Scripting Guide Page 37

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Properties
The following read-only properties are available.

Property Description Values
Document Document object of the current web page. | object
The DOM of the page may be examined
and altered via this object. WARNING:
Use a local variable to hold this reference
to minimize memory usage. (read only)
DocLoaded Returns true if document is loaded. (read | true,
only) false

3.5 THE EVENT OBJECT

The Event object provides access to the Windows “event objects”. The Event
object is a property of the 0S object; 0s.Event. Windows event objects are
used to synchronize operations between processes and signal special
conditions. Normally, Windows event objects are used within a single program or
between programs designed to work together. By providing access to event
objects through scripting, CETerm makes a rich environment to control and
interact with separate applications. For example, a custom utility program written
to control a special device peripheral can signal an event to inform CETerm that
it should read data and respond to a host.

Windows event objects should only be used when synchronization with external
programs or device services is required. For a better understanding of Windows
event objects, you can search for information at msdn.microsoft.com with the
keywords “createevent ce”.

Methods
The following methods are available

Method Action

ClearAllListeners Clear all assigned handler scripts.

ClearListener Clear an assigned handler script for a single event.

Create Create a handle for a named event. If the named event
does not yet exist within Windows, it is created.

Delete Delete an event handle.

DeleteAllEvents Delete all event handles open in CETerm.

CETerm Scripting Guide Page 38

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

GetHandlerScript Returns the handler script for an active listener.

IsExistingEvent Returns status of an event handle.

IsListenerSet Returns status of a listener on a single event.

Pulse Signals all listeners that an event is set, then resets the
event to the non-signaled state

Reset Reset an event to the non-signaled state.

Set Set an event to the signaled state.

SetlListener Assign a handler script to an event. The handler is run
when the event is signaled.

SetProcessListener | Assign a handler script to a running process. The handler
is run when the process exits.

status = ClearAllListeners ()

Clear all handler scripts that have been assigned to events. ClearAllListeners
will also clear handler scripts waiting for processes. Return O for success, or a
negative value for failure.

status = ClearListener (event)

Clear the handler script for the specified event. The event may be specified by
the integer event handle or the event name. Return O for success, or a negative
value for failure.

eventHandle = Create (eventName, manualReset)

Create an eventHandle for the named event. The eventName cannot be empty.
If manualReset is true, the event will not be reset after waiting for a listener. If
manualReset is false, the event is automatically reset after waiting for a listener.
If the named event already exists within Windows, the manualReset value is
ignored and a handle to the existing event is returned. Otherwise, the event is
created within Windows.

Create is typically used when a new event is created for use exclusively within
CETerm. Create may also be used to create a handle within CETerm to access
an event which is normally created within Windows by another program or driver.

Return the eventHandle for success, O for failure.
Use the Event property LastError to get additional error information.

CETerm Scripting Guide Page 39

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

status = Delete (eventHandle)

Delete the specified eventHandle from management. The Create() method must
have been used to create the eventHandle. For convenience, you may specify
the eventName used in the Create() call rather than the eventHandle. Delete()
will clear the event listener if it exists. After deleting an eventHandle, it can no
longer be used for any event operations. If Delete() closes the last open handle
to the Windows event, the named event will no longer exist within Windows.

Return 0O for success, or a negative value for failure. Use the Event property
LastError to get additional error information.

status = DeleteAllEvents ()

Delete all eventHandles obtained with Create(). All event listeners associated
with the events are cleared. DeleteAllEvents() will not clear event listeners that
have been assigned, by name, to Windows events created by other programs.

Return O if any events are deleted, or a negative value if none deleted.

script = GetHandlerScript (eventHandleOrName)

Return the handler script associated with the specified eventHandle or
eventName. Return null if no listener found.

script = GetList ()

Return a list of events from Create() calls and active SetListener() handlers. The
returned list is in the form of a JavaScript array literal [...] which contains
JavaScript object literals {...} containing information about each event. See
Section 2.8 for details about handling JavaScript literals. Return empty array or
null if no events found.

Names of events are included in the results if specified in a Create() call. The
manualReset is included if the Create() call actually created the corresponding
Windows CE event.

Here is a sample event list output:
[{1d:0xFE490034, name: "MyPrivateEvent",manualReset:false},
{1id:0xF345DE00, name: "ExistingEvent"}, {1d:0xEF546902}]

CETerm Scripting Guide Page 40

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

script = GetName (eventHandle)

Return the name of the event associated with the specified eventHandle. Return
null if no listener found.

status = IsExistingEvent (eventHandleOrName)

Return the status of the event with the given eventHandle or eventName. Return
0 if the event does not exist, 1 if the eventName exists within Windows, 2 if the
event was created within Windows by the Create() method, or -1 on error.

status = IsListenerSet (eventHandleOrName)

Return the status of the listener with the given eventHandle or eventName.
Return O if a listener is not set, 1 if a listener is set, or -1 on error.

status = Pulse (eventHandleOrName)

Pulse the state of an event. This signals all listeners that an event is set, then
resets the event to the non-signaled state. The eventHandle is obtained from a
Create() call. If you use an eventName, the event must have been previously
created within Windows by Create() or by another program.

Return 0 on success or -1 if no matching event to pulse.

status = Reset (eventHandleOrName)

Reset an event to the non-signaled state. The eventHandle is obtained from a
Create() call. If you use an eventName, the event must have been previously
created within Windows by Create() or by another program.

Returns 0 on success or -1 if no matching event to reset.

status = Set (eventHandleOrName)

Set an event to the signaled state. The eventHandle is obtained from a Create()
call. If you use an eventName, the event must have been previously created
within Windows by Create() or by another program.

Return 0 on success or -1 if no matching event to set.

CETerm Scripting Guide Page 41

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

status = SetL.istener (eventHandleOrName, handlerScript, timeout)

Assign a handler script to an event. The eventHandle is obtained from a Create()
call. If you use an eventName, the event must have been previously created
within Windows by Create() or by another program. The handlerScript will be
gueued for execution if the event is signaled within timeout milliseconds. The
handler script is not invoked if the listener times out.

The special timeout value of OXFFFFFFFF will never timeout. The special
timeout value 0 will cause an immediate check of the event state. NOTE: The
currently running script which invoked SetListener must finish before any handler
can be executed.

Return 0O if a listener is set or a negative value on error.

status = SetProcessListener (processID, handlerScript, timeout)

The SetProcessListener method assigns a handler to the special event that
occurs when a process exits. The processID is the process id number assigned
when the process is created by Windows. You can find process id values using
the Process object methods. The handlerScript will be queued for execution if
the process exits within timeout milliseconds. The handler script is not invoked if
the listener times out.

The special timeout value of OXFFFFFFFF will never timeout. The special
timeout value 0 will cause an immediate check of the event state. NOTE: The
currently running script which invoked SetProcessListener must finish before any
handler can be executed.

Return 0O if a listener is set or a negative value on error.

Properties
The Event object has the following properties.

Property Description Values
LastError Returns the last error value associated unsigned
with the Event object. integer

CETerm Scripting Guide Page 42

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

3.6 THE FILE OBJECT

The File object provides access to the Windows file system. The File objectis
a property of the OS object; 0S.File.

Methods
The following methods are available

Method Action

Append Append content to a file.

Copy Create a copy of an existing file.
CreateDirectory Create a new directory.

Delete Delete an existing file.

GetAttributes Get the attributes of an existing file.

GetlList Get list of files with names that match a pattern.

GetOpenFileName | Select a filename with a file Open dialog.

GetSaveFileName | Select a filename with a file Save dialog

Move Move or rename a file.

Read Read file contents.

RemoveDirectory | Remove (delete) an existing directory.
SetAttributes Set the attributes of an existing file.
Write Write contents to a new or existing file.

status = Append (fileName, content)

Append content to the file. The content is specified as a text string. Return true
for success, false for failure. If the file does not exist, it is created. Use the File
properties LastError or LastErrorMessge to get additional error information.

status = Copy (existingFile, newFile, overWrite)

Copy an existing file to a new file. If a file already exists with the new file name,
copy will fail unless overWrite is true. Return true for success, false for failure.
Use the File properties LastError or LastErrorMessge to get additional error
information.

CETerm Scripting Guide Page 43

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

status = CreateDirectory (newDirectory)

Create a new directory. Return true for success, false for failure.
Use the File properties LastError or LastErrorMessge to get additional error
information.

status = Delete (fileName)

Delete an existing file. Return true for success, false for failure.
Use the File properties LastError or LastErrorMessge to get additional error
information.

attributes = GetAttributes (fileName)

Return the attributes of the file. Use the File properties LastError or
LastErrorMessge to get additional error information. See Appendix 4 for attribute
definitions.

list = GetL.ist (pattern)

Return a list of files with names that match a pattern. The pattern specifies a
valid directory or path and file name, which can contain wildcard characters, such
as an asterisk (*) or a question mark (?). You may use forward slashes (/) to
delimit directories. The returned list is in the form of a JavaScript array literal [
...] which contains JavaScript object literals {...} containing information about
every matching file. See Section 2.8 for details about handling JavaScript
literals. Return null if no matching files found. Use the File properties LastError
or LastErrorMessge to get additional error information.

For example the following array literal shows two files and a directory:

[{name:"myApp.cab", attributes:0x21,

creationTime:new Date (2006,11,15,11,51,41,480),
lastAccessTime:new Date (2007,7,27,3,27,41,0),
lastWriteTime:new Date (2008,6,15,0,29,50,0), size:2455494},
{name:"myconfig.ini", attributes:0x21,

lastAccessTime:new Date (2007,7,27,3,27,18,0),
lastWriteTime:new Date (2008,6,15,0,29,48,0), size:12564},
{name:"AppDirectory", attributes:0x10,

lastWriteTime:new Date (2008,2,11,12,29,49,0), size:1024}]

Note that the “creationTime” and “lastAccessTime” are not always present and
should be checked for existence before using them. Their existence depends on
the type of Windows filesystem holding the files. See any standard JavaScript

CETerm Scripting Guide Page 44

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

reference for details on the Date() constructor arguments. See Appendix 4 for
attribute definitions.

filename = GetOpenFileName (title, filter)

Return the name of a file specified by the user in an Open file dialog. The title of
the dialog should contain descriptive information for the user. For example,
“‘Please select a datafile.” The filter is a list of filter pairs. Each pair represents
the description of a filter and the file selector wildcards. For a JavaScript file it
may look like this: "Jscript File (*.3s)\x00*.3s\x00\x00". Each element of
the pair is followed by "\x00" as a separator character. The last pair has an

additional trailing "\xo0". Here is a multiple filter example:
"JScript File (*.]Js)\x00*.js\x00A1l1l Files (*.*)\x00*.*\x00\x00"

filename = GetSaveFileName (title, filter)

Return the name of a file specified by the user in a Save file dialog. The title of
the dialog should contain descriptive information for the user. For example,
“‘Save file as:”. The filter is list of filter pairs. Each pair represents the description
of a filter and the file selector wildcards. For a JavaScript file it may look like this:
"JScript File (*.js)\x00*%.js\x00\x00". Each element of the pair is followed
by "\x00" as a separator character. The last pair has an additional trailing

"\x00". Here is a multiple filter example:
"JScript File (*.Js)\x00*.js\x00A11 Files (*.*)\x00*.*\x00\x00"

status = Move (existingFilename, newFileName)

Move or rename an existing file. Returns true for success, false for failure.
Use the File properties LastError or LastErrorMessge to get additional error
information.

contents = Read (fileName)

Read entire file and return as contents. The read is an atomic operation which
opens the file, reads all contents and closes the file. The File object does not
support the concept of an “open” file or reading parts of a file. There must be
sufficient memory to hold the entire file contents. There is no error information
returned. Use GetAttributes to validate a flename and ensure read access.

status = RemoveDirectory (directoryName)
Delete an existing directory. Return true for success, false for failure.

CETerm Scripting Guide Page 45

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Use the File properties LastError or LastErrorMessge to get additional error
information.

status = SetAttributes (fileName, attributes)

Set the attributes of the file. Return true for success, false for failure. Use the
File properties LastError or LastErrorMessge to get additional error information.
See Appendix 4 for attribute definitions.

status = Write (fileName, contents)

Write contents to the named file. Return true for success, false for failure. Any
current contents are first deleted. The write is an atomic operation which opens
the file, writes all contents and closes the file. The File object does not support
the concept of an “open” file or writing parts of a file. To append to a file, use
Append. Use the File properties LastError or LastErrorMessge to get additional
error information.

Properties
The File object has the following properties.

Property Description Values
LastError Returns the last error value associated unsigned
with the File object. integer

LastErrorMessage | Returns a text message of the last error text
associated with the File object. (read

only)

3.7/ THE FTP OBJECT
The FTP object provides access to the File Transfer Protocol (FTP) operations.

You must use the Login() method prior to using the other methods. The FTP
object is a property of the Network object; OS.Network.FTP.

CETerm Scripting Guide Page 46

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Methods

The following methods are available

Method Action
CreateDirectory Create a new directory on the remote host.
DeleteFile Delete a file on the remote host.

DeleteDirectory

Delete a directory on the remote host.

GetFile

Get a file from the remote host.

GetDirectory Get the current directory on the remote host.
ListFiles List files on the remote host.

Login Login to the FTP service of the remote host.
Logout Logout of the FTP service.

PutFile Put a local file onto the remote host.
RenameFile Rename a file on the remote host.

SetDirectory

Set the current directory on the remote host.

status = CreateDirectory (directoryName)

Create a new directory on the remote host. Return 0 on success or non-zero
otherwise. Use the FTP properties LastError and LastErrorText to get additional
error information.

status = DeleteFile (fileName)

Delete the named file on the remote host. Return 0 on success or non-zero
otherwise. Use the FTP properties LastError and LastErrorText to get additional
error information.

status = DeleteDirectory (directoryName)

Delete the named directory on the remote host. Return O on success or hon-zero
otherwise. Use the FTP properties LastError and LastErrorText to get additional
error information.

status = GetFile (localName, remoteName)

Copy the named remote file to the given local name. Return O on success or
non-zero otherwise. Use the FTP properties LastError and LastErrorText to get
additional error information.

CETerm Scripting Guide Page 47

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

directory = GetDirectory ()

Return the name of the current working directory on the host. Returns null on
failure. Use the FTP properties LastError and LastErrorText to get additional
error information.

filelist = ListFiles (pattern)

Return a list of remote files with names that match a pattern. The pattern
specifies a valid directory path or file name on the remote host, which can
contain wildcard characters, such as an asterisk (*) or a question mark (?); but
may not contain spaces. An empty pattern will list all files in the current working
directory. The returned list is in the form of a JavaScript array literal [...] which
contains JavaScript object literals {...} containing information about every
matching file. See Section 2.8 for details about handling JavaScript literals.
Return an empty array literal if no matching files are found. Use the FTP
properties LastError or LastErrorText to get additional error information.

The returned object literals will depend on the remote host and may not contain
all possible properties. See Section 2.8 for dealing with missing properties. For
example the following array literal shows two files and a directory:

[{name:"myApp.cab", attributes:0x21,

creationTime:new Date(2006,11,15,11,51,41,480),
lastAccessTime:new Date(2007,7,27,3,27,41,0),
lastWriteTime:new Date (2008,6,15,0,29,50,0), size:2455494},
{name:"myconfig.ini", attributes:0x21,

lastAccessTime:new Date(2007,7,27,3,27,18,0),
lastWriteTime:new Date (2008,6,15,0,29,48,0), size:12564},
{name:"AppDirectory", attributes:0x10,

lastWriteTime:new Date(2008,2,11,12,29,49,0), size:1024}]

Note that the “creationTime” and “lastAccessTime” are not always present and
should be checked for existence before using them. Their existence depends on
the type of remote host. See any standard JavaScript reference for details on
the Date() constructor arguments. See Appendix 4 for attribute definitions.

status = Login (hostname, userName, password)

Establish an FTP connection to the remote named host. The userName and
password are used for authentication. If the default values are not correct, you
must configure the Port and PassiveMode properties before Login. Return 0 on

CETerm Scripting Guide Page 48

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

success or non-zero otherwise. Use the FTP properties LastError and
LastErrorText to get additional error information.

status = Logout ()

Close an open FTP connection. Return O on success or non-zero otherwise.
Use the FTP properties LastError and LastErrorText to get additional error
information.

status = PutFile (localName, remoteName)

Copy the named local file to the remote name. Return O on success or non-zero
otherwise. Use the FTP properties LastError and LastErrorText to get additional
error information.

status = RenameFile (existingName, newName)

Rename an existing remote file to the newName. Return O on success or non-
zero otherwise. Use the FTP properties LastError and LastErrorText to get
additional error information.

status = SetDirectory (newWorkingDirectory)

Set the current working directory on the remote host to the specified directory.
Return 0 on success or non-zero otherwise. Use the FTP properties LastError
and LastErrorText to get additional error information.

Properties
The FTP object has the following properties.

Property Description Values

ASClIMode Use ASCII mode for file transfers if true. | true or
Use binary mode if false. ASCIl mode | false
may change the line-termination
characters in files. This setting may be
changed while a session is connected.
Default is false.

HostName Hostname of the current active session. | string
(read only)

CETerm Scripting Guide Page 49

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Property Description Values

LastError Returns the last error value associated | unsigned
with any FTP operation. (read only) integer

LastErrorText Returns a text description of the last string
FTP error as reported by the remote
host. (read only)

LoggedIn True if FTP session is currently true or
established. (read only) false

OverwriteExistingLocalFile | If true, GetFile() will overwrite an true or
existing file with the same local name. false
If false, GetFile() will report an error if a
file with the same name exists. Default
is false.

PassiveMode If true, use passive FTP semantics for true or
the connection. This must be set prior | false
to login. Default is false.

Port Specifies the TCP/IP port used on the unsigned
server for the FTP connection. Default | integer
is 21.

ServerListsUTCFiletimes | If true, ListFiles() assumes that the true or
server sends UTC based file false
timestamps and converts these to local
times before output. If false, assumes
that timestamps are in local times.

Default is false.
UserName User name of the current active string

session. (read only)

3.8 THE GPS OBJECT

The GPsS object provides access to GPS operations. The GPS object is a
property of the Device object; Device.GPS. The GPS object provides direct
access to the GPS functionality. Some devices do not support the GPS object,
but GPS data can be read from a serial port using the Device.SerialPort ()
object. Consult your device documentation for details. Supported for CETerm

V5.5.3 or later.

CETerm Scripting Guide

Page 50

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Methods
The following methods are available

Method Action

Open Open the GPS device and enable operations.
Close Close the GPS device.

GetPosition Read the current GPS position.
GetDeviceState Query the GPS device state.

status = Open ()

Open the GPS device and enable operations. This action will supply power to
the GPS device if it is not already operational. To minimize power consumption,
the GPS device should remain closed until data is required.

Before opening the device, you may want to set the event properties if events are
used to monitor location changes. Return O for success, non-zero for error. Use
the GPs property LastError to get additional error information.

status = Close ()

Close the GPS device. Return O for success, non-zero for error. Use the GPS
property LastError to get additional error information.

position = GetPosition()

Read the current GPS position. The returned position is a JavaScript object
literal {...} containing information about the current position. See Section 2.8 for
details about handling JavaScript literals. Return null if error. Use the GPsS
property LastError to get additional error information.

The returned literal contents will depend on the capabilities of the GPS hardware.
If successful, the contents should at least contain “latitude” and “longitude”
values. The GPsS property MaximumAge also affects the returned values. Any
position data older than MaximumAge milliseconds will not be reported. Satellite
data is only included if the GPS property IncludeSatelliteData is true.

Here is a sample position output:
{flags:0x0,timeUTC: {year:2008, month:8,day:8,
hour:8,minute:8,second:0,millisecond:0},

CETerm Scripting Guide Page 51

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

latitude:47.64000000, longitude:-122.13000000,
speed:0.0,heading:0.0,magneticvVariation:0.0,
altitudeSealevel:30.123,altitudeEllipsoid:50.00,
fixQuality:1, fixType:1,fixSelection:1,
positionalDOP:0.0,horizontalDOP:0.0,verticalDOP:0.0,
satellites: {usedCount:4,usedPRN:[0,0,0,0],
inViewCount:8, inViewPRN:[0,0,0,0,0,0,0,0],
inviewElevation:[(0,0,0,0,0,0,0,0],
inViewAzimuth:[0,0,0,0,0,0,0,01,
inviewSNR:[0,0,0,0,0,0,0,01} }

The speed is in knots and altitudes are in meters.

If GetPostion() is called when the GPS object is closed, it may return a cached
position reading from the device, but will not apply power. If the reading was
cached but is older than MaximumAge, it will not be returned. You should check
timeUTC to determine if the returned values were cached.

state = GetDeviceState()

Read the GPS device state. The returned state is a JavaScript object literal {...}
containing information about the current device state. See Section 2.8 for details
about handling JavaScript literals. Return null if error. Use the GPS property
LastError to get additional error information.

The returned literal contents will depend on the GPS hardware. Here is a sample

State output:
{serviceState:0x1,deviceState:0x0,
timeLastDataReceived:new Date (2008,8,8,8,8,0),
driverPrefix:"COM4:",multiplexPrefix:"GPD1:",
friendlyName:"ACME GPS Card, version 1.23"}

Properties
The GPsS object has the following properties.

| Property | Description | values

CETerm Scripting Guide Page 52

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

position changes. If needed, you must
set this value before calling Open(). The
eventlD must be obtained by calling
OS.Event.Create().

Property Description Values

DeviceStateChangeEvent | Event ID of event signaled when GPS eventlD
device state changes. If needed, you
must set this value before calling
Open(). The eventID must be obtained
by calling OS.Event.Create()

IncludeSatelliteData Include satellite data with position true, false
results if true. Default is false.

IsOpen Indicates GPS device is open and true, false
enabled. (read only)

LastError Returns the last error value associated unsigned
with the GPS object. integer

LastPosition Return last position data obtained by object
GetPosition. literal

MaximumAge Maximum age in milliseconds of position | unsigned
results returned by GetPosition. Default | integer
value is 180000.

NewLocationDataEvent Event ID of event signaled when GPS eventlD

Example

The following example shows how the GPS device can be monitored and the
current location displayed. This example also uses the 0S.Event methods, a
global hot-key, and CETerm.Message. The event is signaled by the GPS device
and used to update the display. The hot-key is used to terminate the demo. To
run this demo, simply load the full script into an available script slot and tap

“Test/Load”.

// GPS Demo Script
WARNING:
WARNING:

WARNING:

// Constants
var VK RETURN = 0x0D;

This demo overwrites the contents of Script 50.
This demo does not contain any error checking and
may not work on all devices.

// Enter key

// Function to update position display when position

// event is signaled.

function UpdateGPSPosition ()

{

CETerm Scripting Guide

Page 53

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

var p;

var pl = Device.GPS.GetPosition();
// Parse position literal object
eval ("p="+pl):;

O0S.Beep();
// Update display message
CETerm.Message.Text = "Lat and Long will display values when" +
" GPS obtains a location fix." +
" Initial fix may take several minutes." +

"\nPress ENTER when done.\nLat:" +
p.latitude + "\nLong:" + p.longitude;

// Reschedule event listener
var s = 0OS.Event.SetListener("GPSPositionUpdateEvent",
"UpdateGPSPosition();", 300000);
}

// Function to cleanup GPS display when done
function CleanupGPS ()

{

var g = Device.GPS;

var m = CETerm.Message;
var e = OS.Event;

var k = Device.Keyboard;

// Close GPS device
g.Close();

// Hide display
m.IsVisible = false;

// Remove event listener
e.ClearListener ("GPSPositionUpdateEvent");

// Delete event
e.Delete("GPSPositionUpdateEvent");

// Remove hot-key assignment
k.DeleteHotKey("IDA SCRIPT 50");

// Function which initializes demo
function GPSDemo ()

{

var s; // status

var g = Device.GPS;

var m = CETerm.Message;
var e = OS.Event;

var k = Device.Keyboard;

// Create event for GPS position update
var ep = e.Create("GPSPositionUpdateEvent", false);

CETerm Scripting Guide Page 54

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

// Assign initial listener script for GPS position event
s = e.Setlistener(ep, "UpdateGPSPosition();", 300000);

// Assign event to GPS object
g.NewLocationDataEvent = ep;
g.MaximumAge = 5000;

// Open GPS device
s = g.Open() ;

// Prepare message display
m.AbortButtonVisible = false;

m.Title = "GPS Demo";
m.Text = "Initializing, please wait...";
m.IsVisible = true;

// Create global hot-key to run Script 50 for cleanup
k.AssignHotKey(VK RETURN, 0, "IDA SCRIPT 50");

// Put cleanup script invocation into slot 50
CETerm.SetProperty("app.script.50", "CleanupGPS()");
}

// Invoke GPSDemo function to start demo
GPSDemo () ;

3.9 THE KEYBOARD OBJECT

The Keyboard object provides access to keyboard operations. The Keyboard
object is a property of the Device object; Device.Keyboard. The Keyboard
object can be used to simulate hardware keyboard actions to other applications
or to CETerm if required. Simulated key events should not be used if CETerm
Action codes can achieve the same result.

The Keyboard object can also create global “hot-keys” which can be used to
activate CETerm actions or scripts. Global hot-keys are recognized regardless of
which program is active and in the foreground. Global hot-keys can be an
important feature when using CETerm as a lock-down shell and program
launcher.

Methods
The following methods are available

CETerm Scripting Guide Page 55

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Method Action
AssignHotKey Assign a global hot-key.
DeleteHotKey Delete a global hot-key.

DeleteAllHotKeys

Delete all global hot-keys.

Enable

Enable or disable the keyboard.

IsEnabled Check the keyboard enabled state.

IsHotKey Check if a global hot-key has been assigned.
IsKkeyDown Check if a state key was down for the last key input.
IsKkeyDownNow Check if a key is currently down.

IsKeyToggled Check if a state key is toggled on.
SimulateKeyDown | Simulate the press of a hardware key.
SimulateKeyUp Simulate the release of a hardware key.

SimulateKeyPress

Simulate the press and release of a key and specify
generated text.

status = AssignHotKey (vkCode, keyModifiers, idaCode)

Assign a CETerm action to a global hot-key. The vkCode is an integer “virtual-
key code” between 1 and 254. See Appendix 5 for virtual-key values. The
keyModifiers specify if the Alt, Ctrl, Shift, or Windows key must also be pressed

with the activating key. See Appendix 4 for key modifier values. The idaCode is
a CETerm IDA Action Code symbolic name as a text string. Each hot-key must
use a unique IDA Action Code. Often, the IDA code will activate a CETerm script
to perform multiple operations. If multiple hot key combinations must perform the
same action, you can use separate but identical scripts. See Appendix 1 for IDA
values. Return O for success, 1 if replaced an existing hot-key, or a negative
value for failure. Use the Keyboard property LastError to get additional error
information.

A global hot-key is recognized regardless of the foreground application, so it can
be used to activate CETerm actions even when another program is visible.

WARNING: On Windows Mobile devices, the CETerm setting “Disable Windows
Action Keys” will also disable all hot-keys in CETerm.

status = DeleteHotKey (idaCode)

Delete the global hot-key with the specified IDA action. Return O if deleted the
hot-key, -1 if the key was not found, other negative value for failure. Use the
Keyboard property LastError to get additional error information.

CETerm Scripting Guide Page 56

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

status = DeleteAllHotKeys ()
Delete all global hot-keys. Return O.

status = Enable (enabled)

Enable or disable the hardware keyboard. If enabled is true the keyboard is
enabled, if false it is disabled. Not all devices support this action. Return the
new keyboard state.

WARNING: If the keyboard is disabled, it may render the device unusable and
require a system reset. Design your scripts defensively to prevent
unwanted conditions.

status = IsEnabled ()

Check the keyboard enabled state. Returns true if enabled, false if disabled. Not
all devices support this action.

status = IsHotKey (idaCode)

Check if a global hot-key has been assigned with the specified IDA code. Return
true if hot-key was assigned, false otherwise.

status = IsKeyDown (vkCode)

Check the status of the specified key. Return true if key was down, false if up.
Note that this state is updated by Windows only when key events are processed.
Use IsKkeyDownNow() to check the instantaneous state of a key. See Appendix
5 for VK values.

status = IsKeyDownNow (vkCode)
Check the current status of the specified key. Return true if key is down, false if
up. This instantaneous check is useful to detect when a user releases a key.
See Appendix 5 for VK values.

status = IsKeyToggled (vkCode)
Check the toggle status of the specified key. Return true if key is toggled on,
false if toggled off. This check is used for VK_CAPITAL (0x14) and
VK_NUMLOCK (0x90) keys only.

CETerm Scripting Guide Page 57

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

status = SimulateKeyDown (vkCode)

Simulate the press of a hardware key. The vkCode is an integer “virtual-key
code” between 1 and 254. See Appendix 5 for virtual-key values. This key event
will be received by the current active (foreground) window which may not be
CETerm. The key down action may also generate text input to the application.
Typically SimulateKeyDown() is followed by a SimulateKeyUp(). Return O on
success, -1 for invalid VK code.

status = SimulateKeyUp (vkCode)

Simulate the release of a hardware key. The vkCode is an integer “virtual-key
code” between 1 and 254. See Appendix 5 for virtual-key values. This key event
will be received by the current active (foreground) window which may not be
CETerm. Typically SimulateKeyUp() follows a SimulateKeyDown() call. Return
0 on success, -1 for invalid VK code.

status = SimulateKeyPress (vkCode, keyStateFlags, text)

Simulate the press and release of a key and specify generated text. The vkCode
is an integer “virtual-key code” between 1 and 254. See Appendix 5 for virtual-
key values. The keyStateFlags indicate the simulated state of modifier keys.
See Appendix 4 for key state flag values. The text is an arbitrary text string that
will be sent to the application together with the key events. This key event will be
received by the current active (foreground) window which may not be CETerm.
SimulateKeyPress() should be used when you need to simulate text sent to an
independent application. Return 0 on success, -1 for invalid VK code.

Properties
The Keyboard object has the following properties.

Property Description Values
LastError Returns the last error value associated unsigned
with the Keyboard object. integer

CETerm Scripting Guide Page 58

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Example

The following example shows how a global hot-key may be assigned to cycle
between several running programs. This example also shows the use of several
0S.wWindow methods. The hot-key invokes a CETerm script that will check
which application is visible and switch to the next. The script is shown first. It
must be imported into any CETerm script slot and marked “Load at Startup”.

// Switch between multiple applications
// Each appX name can be a regular expression or string
// Can be any number of applications named in arguments
function ToggleApplications(appl, app2)
{

// Find current application

var 1i;

var top = 0S.Window.GetTopmost () ;

var toptext = OS.Window.GetText (top);

var topindex = -1;

// DEBUG: OS.Alert ("toptext='" + toptext + "'");

// Find argument that matches current foreground application

// If no match, will switch to appl.
for (i=0; i < arguments.length; ++1)
{
if (toptext.match(arguments[i]))
{
topindex = 1i;
break;

}

// Find next application index
var nextindex = (topindex + 1) % arguments.length;

// DEBUG: OS.Alert ("topindex=" + topindex +
// " nextindex=" + nextindex +
// " arg=" + arguments[nextindex]);

// Find next window
var wa eval (OS.Window.GetList ());
for (i=0; i < wa.length; ++i)

{

// DEBUG: OS.Alert("text='" + wa[i].text + "'");

if (wali].text.match(arguments[nextindex]))
{

OS.Window.SetTopmost (wal[i].hwnd);
}

The next step is to define the script that is run when the hot-key is pressed. This
script invokes ToggleApplications. Let's assume this scriptis in Script #8.

CETerm Scripting Guide

Page 59

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

// Switch between CETerm, Calculator, and Media Player.
ToggleApplications(/ceterm/i, /calc/i, "Media Player");

The last step is to assign the hot-key to run Script #8. This can be placed in any
script slot. It may be marked “Load at Startup” or the key could be assigned as

part of other initialization scripts. For this example, Shift+Right_Arrow is the hot-
key combination.

// Assign hot-key

var vk rightarrow = 0x27;

var modifier shift = 0x4;

var k = Device.Keyboard;

var result = k.AssignHotKey(vk rightarrow, modifier shift,
"IDA SCRIPT 8");

if (result != 0)

{
OS.Alert ("AssignHotKey failed e=" + k.LastError);
}

3.10 THE MESSAGE OBJECT

The Message object provides feedback to the user while a script is running. The
Message object is a property of the CETerm object; CETerm.Message. This
object displays a dialog with a text message, an optional progress bar, and an
optional script cancellation button. The progress value can be set by the script

as tasks are completed, or it can run at a constant rate to show activity to the
user.

Methods
The Message object has no methods.

Properties

The Message object is controlled through read-write properties. Setting a
property will change the message dialog appearance.

| Property | Description | values |

CETerm Scripting Guide Page 60

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Property Description Values
AbortButtonVisible | If true, a script abort button is visible. true, false
Taping this button will abort the current
script execution.
IsVisible If true, message dialog is visible. true, false
Progress Current progress value in percent. 0 to 100
ProgressRate Rate of change of progress bar. Inunits | 1 to 100
of percent per second.
ProgressRunning | If true, Progress increases at true, false
ProgressRate
ProgressVisible If true, progress bar is shown true, false
Text Text of message. text
Title Text in message box title bar. text
Timeout Visibility timeout for dialog. After this 0 to 9999
interval, message dialog is closed. A
value of 0 disables this timeout.

3.11 THE NETWORK OBJECT
The Network object provides access to the network features such as hostname
resolution, ping, and FTP. The Network object is a property of the 0S object;
O0S.Network.

Methods
The following methods are available

Method Action
DNSLookup Lookup the IP address of a given hostname.
Ping Test whether a host is reachable across an IP network.

ipAddress = DNSLookup (hostname)
Return the IP address corresponding to the hostname as a string. Returns null if
cannot resolve the IP address. Use the Network property LastDNSError to get
additional error information.

CETerm Scripting Guide Page 61

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

status = Ping (hostname, timeout)

Sends an ICMP packet to the hostname and waits timeout milliseconds for a
reply. The hostname may be a text name or an IP address. Return the round-
trip response time in milliseconds. Return O for no response, or a negative value
on error. Use the Network property LastPingError to get additional error
information.

The Ping command is synchronous, so no other CETerm operations occur while
it is active. You should minimize the timeout value. The property
MaximumPingTimeout limits the timeout you can specify in the Ping command.

Properties
The Network object has the following properties.

Property Description Values
FTP Returns the FTP object. This object object
provides access to FTP operations. (read
only)
LastDNSError Returns the last error value associated unsigned
with the DNSLookup method. (read only) | integer
LastPingError Returns the last error value associated unsigned
with the Ping method. (read only) integer
LastPingHostName Returns the hostname used in the last string
Ping operation. (read only)
LastPinglPAddress Returns the IP address used in the last string
Ping operation. (read only)
LastWSAError Returns the last error value associated unsigned
with any Windows socket operations. integer
(read only)
MaximumPingTimeout | Controls the maximum timeout for the integer
Ping command. The default value is
3000 milliseconds. Use caution when
increasing this value due to the delays it
may produce.

CETerm Scripting Guide Page 62

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

3.12 THE PROCESS OBJECT

The Process object provides access to running Windows processes. Processes
can be started, killed, and listed. The Process object is a property of the 0S
object; 0OS.Process.

Methods
The following methods are available

Method Action

ExecuteAction Run a program or open a file via the specified action.
GetList Get a list of the running processes

Kill Stop (Kill) a running process.

WaitForExit Wait for a running process to exit.

status = ExecuteAction (file, arguments, verb)

Run a program using the specified action verb. The file specifies either an
executable program that will be run or a general document file that will be
processed according to the specified verb. The arguments are specified as a
text string and are passed to the program that is run. Arguments are separated
by spaces. Use quotes if an argument contains spaces. If you want to include
double quotation marks as part of an argument, these must be enclosed by two

sets of double quotation marks. For example the argument string
var args = 'first "arg with spaces" """quotes part of arg""" last';

specifies 4 arguments: first, arg with spaces, "quotes part of arg",
and last.

Normally, the verb is “open” for executable files, but it may be “edit” or “print” to
invoke those actions on a document file. Return O on success or non-zero
otherwise. Use the Process property LastError to get additional error
information. Use the property LastExecuteProcess to get the process ID of the
last process started.

processList = GetL.ist ()

Return a list of currently running processes. The returned list is in the form of a
JavaScript array literal [...] which contains JavaScript object literals {...}

CETerm Scripting Guide Page 63

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

containing information about each process. See Section 2.8 for details about
handling JavaScript literals. Return null if error. Use the Process property
LastError to get additional error information.

The returned literal has the following format:

[{processID:0x17£df002,

threads:2, name:"NK.EXE"},

{processID:0x17fcb266, threads:6, name:"filesys.exe"},
{processID:0xb7f67176, threads:85, name:"device.exe"},
{processID:0x97ababe6b, threads:10, name:"gwes.exe"},

{processID:0xf79f7%aa, threads:4, name:"explorer.exe"},
{processID:0xb79f7e32, threads:7, name:"services.exe"},
{processID:0x77452dda, threads:2, name:"CETerm.EXE"}]

status = Kill (processiD)

Terminates a currently running process identified by the process ID. Return 0 on
success or non-zero otherwise. Use the Process property LastError to get
additional error information.

exitvalue = WaitForExit (processiD, timeout)

Wait timeout milliseconds for a currently running process to terminate. Return
the exit value of the process. Use the Process property LastError to determine
if the call timed out, there was an error, or the process terminated normally.

While waiting for the process, CETerm is prevented from performing any other
actions. Keep the timeout to less than a couple of seconds. It is better to use
the Event.SetProcessListener() method to detect the termination of a process.

Properties
The Process object has the following properties.

Property Description Values

LastError Returns the last error value associated | unsigned
with any Process operation. (read only) | integer

LastExecuteProcess Returns the process ID of the last unsigned
process created by ExecuteAction. integer
(read only)

CETerm Scripting Guide Page 64

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

3.13 THE REGISTRY OBJECT

The Registry object provides access to the Windows registry. The registry is a
form of database on Windows devices which holds the device configuration. The
registry has a hierarchical structure. The “keys” are similar to file folders and the
“values” inside a key are similar to files in a folder.

For a better understanding of the Windows registry, you can search for
information at msdn.microsoft.com with the keywords “using registry ce”.

Several methods require a “fully qualified” value name which contains the full key
hierarchy, begins with a “root” key, and ends with the value name. This fully
qualified value name is similar to a file name with the full path. The Registry
object is a property of the 0S object; 0S.Registry.

WARNING: Altering the registry can make your device unusable. Be sure you
understand the effect of changing values.

Methods
The following methods are available

Method Action

DeleteKey Delete an existing key.

DeleteValue Delete an existing value.

EnumerateKeys Get all sub-key names of a specified key.
EnumerateValues | Get all value names of a specified key.

FlushKey Issue the RegFlushKey command.

GetValueType Get the data type of a value.

ReadValue Read a value from a key.

ReadValueVBArray | Read a value from a key and return as a Visual Basic array.
WriteValue Write a value to a key.

status = DeleteKey (keyname)

Deletes an existing key and all values. Returns O for success or non-zero for an
error. Delete will fail if a key has sub-keys.

CETerm Scripting Guide Page 65

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

status = DeleteValue (keyname, valuename)

Deletes the specified value in an existing key. Returns O for success or non-zero
for an error.

keylist = EnumerateKeys (keyname)
Return a list of sub-keys of the specified key. See Appendix 4 for key names and
definitions. Each sub-key in the list is separated by the current StringSeparator
property value.

keylist = EnumerateValues (keyname)

Return a list of values of the specified key. See Appendix 4 for key names and
definitions. Each value name in the list is separated by the current
StringSeparator property value.

status = FlushKey (keyname)

Performs a Windows CE “RegFlushKey” on the specified key. Some older
devices use this to trigger a save of the current registry to persistent memory.
Do not use FlushKey unless directed by the device manufacturer. Returns 0O for
success, non-zero for error.

type = GetValueType (valuename)

Gets the data type for the specified value. Use a fully qualified value name that
starts with a root key. Returns O for success or non-zero for an error.

data = ReadValue (valuename)

Read the data from the specified value. Use a fully qualified value name that
starts with a root key. Binary values are returned as a list of comma separated
hexadecimal digits. MULTI_SZ strings are separated with the current
StringSeparator property value.

data = ReadValueVBArray (valuename)

Read the data from the specified value. Return the data as a Visual Basic array.
Use a fully qualified value name that starts with a root key. It is usually best to
use the ReadValue method and split the values using JavaScript. In rare
circumstances a true array may be needed. It is not possible to return a

CETerm Scripting Guide Page 66

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

JavaScript array, but it is easy to convert a Visual Basic array into a JavaScript
array using the VBArray object. For example:

var valuename = "HKLM\\Comm\\PY21BG1l\\Parms\\TcpIp\\DhcpDNS";
var vbarray = new VBArray(OS.Registry.ReadValueVBArray(valuename);
var jsarray = vbarray.toarray();

status = WriteValue (valuename, valuedata, datatype)

Write the specified value. Use a fully qualified value name that starts with a root
key. WriteValue will create the containing key if it does not exist. Binary values
are submitted as a list of comma separated hexadecimal digits. MULTI_SZ
strings are separated with the current StringSeparator property value. Returns O
for success, non-zero for error. See Appendix 4 for root key names and datatype
definitions. Common datatypes are “REG_SZ” for a string and “REG_DWORD”
for a DWORD value.

Properties
The Registry object has the following property.

Property Description Values
StringSeparator Text string that separates MULTI_SZ text
values. Default: "<|>"

3.14 THE SCREEN OBJECT

The Screen object gives access to a session terminal emulation screen. The
Screen object is a property of the Session object;

CETerm.Session (i) .Screen. This section documents the methods and
properties of the Screen object.

To access text in a browser page, use the Browser.Document reference and
read the text directly from the desired page element.

Methods
The following methods are available

CETerm Scripting Guide Page 67

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Method Action

GetText Get all text from start location to end location
GetTextLine Get all text on a line

GetTextRect Get a rectangle of text

text = GetText (startRow, startColumn, endRow, endColumn)

Return the requested range of text. Each line will be separated by the
TextLineSeparator property value. If the session is not connected the JavaScript
null value is returned. End coordinates of -1 will use the maximum valid value.

text = GetTextLine (row)

Return the requested row of text. If the session is not connected the JavaScript
null value is returned. The row range is from 1 to the maximum row number.

text = GetTextRect (startRow, startColumn, endRow, endColumn)

Return the requested rectangle of text. Each line fragment will be separated by
the TextLineSeparator property value. If the session is not connected the
JavaScript null value is returned. End coordinates of -1 will use the maximum
valid value.

Properties
The Screen object has the following properties.

Property Description Values
Rows Number of rows in screen. (read only) 1-50
Columns Number of columns in screen. (read only) | 1-132
CursorRow Current row containing cursor. Setting 1 to Rows
this value will change the cursor location.
CursorColumn Current column containing cursor. Setting | 1 to
this value will change the cursor location. | Columns
DisplayStatus IBM display status. (read only) integer,
see
Appendix 4
KeyboardState Keyboard state. This applies to VT and integer,

CETerm Scripting Guide Page 68

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Property Description Values
IBM emulation only. VT state can only be | see
locked or unlocked. (read only) Appendix 4
TextLineSeparator | Text which separates every line in Default:
GetText methods. nothing

3.15 THE SERIALPORT OBJECT

The SserialPort object gives access to serial port functionality. The
SerialPort objects are obtained from a Device object method,;
Device.SerialPort (i) where i is 0 through 9. This section documents
the methods and properties of the SerialPort object. The SerialPort object
has been used to integrate devices such as tethered scanners, Bluetooth
scanners, and RFID readers into CETerm. See Chapter 5 for additional details
about using the SerialPort object.

Methods
The following methods are available
Method Action
CancelWaitForEvent | Stop listening for a serial port event.
ClearBreak Clear the break condition.
ClearError Clear any error conditions and return status information.
Close Close the serial port and terminate communications.
Open Open the serial port for communication.
PurgeQueues Discard content of input and output queues.
Read Read up to a maximum number of bytes.
ReadByte Read one byte
ReadTillByte Read up to a maximum number of bytes, or a specified
byte value.
SetBreak Set the break condition.
SetQueueSizes Set the size of input and output queues.
WaitForEvent Start listening for a serial port event.
Write Write a string of characters.
WriteByte Write a single byte value
WriteNULL Write a number of NULL (0) bytes
WriteUrgent Write a single urgent byte at the front of the output queue.

CETerm Scripting Guide

Page 69

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

status = CancelWaitForEvent ()
Cancel the active event listener for the port. If canceled, changes in port status
will not be reported through the event handler OnSerialPortEvent. Return O on
success, non-zero for failure.

status = ClearBreak ()

Clear the break condition on the port. Return O on success, non-zero for failure.
Use the SerialPort property LastError to get additional error information.

status = ClearError ()
Clear the error condition and re-enable 1/O operations. Return information about
the error condition and current port status as a JavaScript literal object. Return
null if the port is not open or other failure. More details can be found by
searching msdn.microsoft.com with the keyword “clearcommerror”.

The general format of the status is:
{"errorType":1, "CTSHold":false, "DSRHold":false,
"RLSDHold":false, "XOFFHold":false, "XOFFSent":false,
"EOF":false, "TXIM":false, "inputQueue":0, "outputQueue":0}

status = Close ()
Close the serial port. Any active event listener is canceled. Return O on
success, non-zero for failure. Use the SerialPort property LastError to get
additional error information.

status = Open (access)
Open the serial port for communications. The access parameter code specifies
read and/or write access. Return 0 on success, non-zero for failure. Use the
SerialPort property LastError to get additional error information. See
Appendix 4 for access definitions.

status = PurgeQueues (mode)
Discard content from input and output queues. Return 0 on success, non-zero
for failure. Use the SerialPort property LastError to get additional error
information. See Appendix 4 for mode definitions.

CETerm Scripting Guide Page 70

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

data = Read (maxCount)

Read up to maxCount bytes from the port. Return data as a string. Return null if
no data or error. This method blocks until the maximum bytes are read or the
read timeout expires. Data are converted from bytes to a wide character string
by mbstowcs using the current locale. Use the SerialPort property LastError
to get additional error information.

data = ReadByte ()

Read a single byte from the port. Return data as an integer value between 0 and
255. Return negative number if failure; -1 — failure, -2 — timeout. This method
blocks until the byte is read or the read timeout expires. Use the SerialPort
property LastError to get additional error information.

data = ReadTillByte (maxCount, byteValue)

Read up to maxCount bytes from the port. Return data as a string. Return null if
no data or error. This method blocks until the maximum bytes are read, or a byte
with the specified integer value is read, or the read timeout expires. The
suggested technique to use ReadTillByte is to call it after the EV_RXFLAG event
is signaled through OnSerialPortEvent with desired character as the event
character. Use the SerialPort property LastError to get additional error
information.

status = SetBreak ()

Set the break condition on the port. Suspends character transmissions and
enters the break state. Return 0 on success, non-zero for failure. Use the
SerialPort property LastError to get additional error information.

status = SetQueueSizes (inputQueueSize, outputQueueSize)

Set the size of input and output queues. Return 0 on success, non-zero for
failure. Use the SerialPort property LastError to get additional error
information. More details can be found by searching msdn.microsoft.com with
the keyword “setupcomm?”.

CETerm Scripting Guide Page 71

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

status = WaitForEvent ()

Enable an event listener for the port. The listener waits for events that are
specified in the property EventMask. If the event is signaled by the port, the
event handler OnSerialPortEvent is invoked. The event handler is invoked only
once for each call of WaitForEvent, but the handler parameters may indicate
multiple event conditions. Return 0 on success, non-zero for failure.

status = Write (data)

Write the data string to the port. Data are converted from wide characters to
bytes with wcstombs using the current locale. Return number of bytes written
for success, negative value for failure. Use the SerialPort property LastError
to get additional error information.

status = WriteByte (byteValue)

Write a single byte with integer value byteValue to the port. Return 1 for
success, negative value for failure. Use the SerialPort property LastError to
get additional error information.

status = WriteNULL (nullCount)

Write NULL (0) bytes to the port. Write nullCount NULL bytes to the port. Return
number of bytes written for success, negative value for failure. Use the
SerialPort property LastError to get additional error information. Where
needed, this method may be used to “wakeup” an attached device prior to
sending commands.

status = WriteUrgent (byteValue)

Write a single byte with integer value byteValue to the port. This places the byte
ahead of any pending data in the output buffer. Return 1 for success, negative
value for failure. Use the SerialPort property LastError to get additional error
information. More details can be found by searching msdn.microsoft.com with
the keyword “transmitcommchar”.

Properties

Many of the SerialPort properties correspond directly to Windows serial port
configuration values. More details can be found by searching

CETerm Scripting Guide Page 72

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

msdn.microsoft.com with the keywords “commtimeouts structure ce” and “DCB
structure ce”.

In general, you should set all necessary properties before opening the serial port.
However, you may alter the properties of an open port by assigning new values.
See Chapter 5 for additional details about using the serialPort object.

The serialPort object properties are listed in the following tables. The first
table contains general purpose properties, the second contains device control
(DCB) properties and the third contains timeout properties. Values marked (D)
indicate the default setting.

General Description Values
Property
EventMask Events monitored by WaitForEvent. integer flags, see
Default is none. Appendix 4
IsOpen Returns true if port is open. (read true, false
only)
LastError Returns the last error value unsigned integer

associated with any SerialPort
operation. (read only)

ModemStatus | Modem status. (read only) integer flags, see
Appendix 4
Portindex Index of this SerialPort object. (read | integer
only)
PortName Name of the serial port device. text

Default value is “COMx:” where x is
the Portindex.

DCB Description Values

Property

BaudRate Baud rate of device. Default integer, see
115200. Appendix 4

CheckParity Perform parity checking. true, false(D)

CTSOutputFlowControl | Monitor CTS signal for output flow | true, false(D)
control.

DataBits Bits per byte. integer (D:8)

DiscardReceivedNULL Discard any null bytes received. true, false(D)

DSRInputControl Monitor DSR signal for input flow. | true, false(D)

CETerm Scripting Guide Page 73

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

DCB Description Values
Property
DSROutputFlowControl | Monitor DSR signal for output flow | true, false(D)

control.

DTRControlMode

DTR signal mode. Default is
“‘enable when open” (0x1).

integer, see
Appendix 4

EventCharacter Character that triggers integer (D:0x0)
EV_RXFLAG event.

OutputContinueOnXOFF | Continue output when XOFF has | true(D), false
been sent to restrict input.

ParityMode Parity scheme to use when parity | integer, see
checking is enabled. Default is Appendix 4
“‘none” (0x0).

RTSControlMode RTS signal mode. Default is integer, see
“enable when open” (0x1). Appendix 4

StopBits Number of stop bits to use. integer, see
Default value is “one stop bit” Appendix 4
(D:0x0)

XONCharacter Value of XON character. (D:0x11) | integer

XONLowerLimit Consumed space threshold in integer (D:100)
input buffer below which flow
control is relaxed to allow
additional input. Input flow control
may be XON/XOFF, RTS, or
DTR.

XOFFCharacter Value of XOFF character. integer

(D:0x13)

XOFFInputFlowControl

Enable XON/XOFF control for
reception. Send XOFFCharacter
when XOFFUpperCushion is
reached. Send XONCharacter
when XONLowerLimit is reached.

true(D), false

XOFFOutputFlowControl

Enable XON/XOFF control for
transmission. Stop transmission
when XOFFCharacter is received,
re-start when XONCharacter is
received.

true(D), false

XOFFUpperCushion

Minimum available space in input
buffer allowed before flow control
is activated to stop additional
input. Input flow control may be
XON/XOFF, RTS, or DTR.
(D:0x0)

integer (D:100)

CETerm Scripting Guide

Page 74

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Timeout Description Values

Property

ReadIntervalTimeout Maximum milliseconds allowed | integer
between the arrival of two (D:Oxfffffffr)

bytes. If this time is exceeded
the read call will return. A value
of 0 means not used.

With the special value Oxffffffff,
the read operation will return
immediately with all bytes
already received if the
ReadTotalTimeoutConstant and
ReadTotalTimeoutMultiplier are

both zero.
ReadTotalTimeoutConstant | Constant milliseconds time integer (D:0)
added to compute total timeout.
ReadTotalTimeoutMultiplier | Milliseconds factor multiplied integer (D:0)

times the number of bytes
requested in the read request.
This is added to the
ReadTotalTimeoutConstant to
yield the total read timeout.

WriteTotalTimeoutConstant | Constant milliseconds time integer (D:0)
added to compute total timeout.
WriteTotalTimeoutMultiplier | Millisecond factor multiplied integer (D:0)

times the number of bytes to be
written. This is added to the
WriteTotalTimeoutConstant to
yield the total write timeout.

See a complete discussion of timeout properties, special values, and special
behaviors by searching msdn.microsoft.com for “commtimeouts structure ce”.

3.16 THE SESSION OBJECT
The Session object gives access to session state. The Session object is
obtained from a CETerm object method; CETerm.Session (i). This section
documents the methods and properties of the Session object.

CETerm Scripting Guide Page 75

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Methods
The session object has no methods.

Properties
The Session object has several read only properties.

Property Description Values

Browser Returns browser object. (read only) object

IsConnected Returns true if session is connected. | true, false
(read only)

Screen Returns screen object. (read only) object

3.17 THE TEXTINPUT OBJECT

The TextInput object provides user inputin a script. This object displays a
dialog with a text message, an input field, a Cancel button and an OK button.
The TextInput object is a property of the CETerm object;
CETerm.TextInput.

Methods
The following methods are available

Method Action

Getlnput Get input from the user

result = Getlnput ()

Getlnput displays the user input dialog. Returns 1 for successful input, O if input
is canceled by the user or -1 if there was an error. A default response may be
set in the Input property prior to calling Getlnput. If no default is desired, be sure
to clear Input prior to calling Getinput.

CETerm Scripting Guide Page 76

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Properties

The TextInput has the following properties.

Property Description Values
Input Can be pre-set with default response text
before calling Getlnput. If Getlnput
returns 1, contains the user input.
PasswordMode If true, input is shown as * characters. true, false
Prompt Text prompt message for user. text
Title Text in message box title bar. text

3.18 THE WINDOW OBJECT

The Wwindow object provides access to the displayed windows of running
processes. This object can be used to find applications and send messages to
those applications. This feature allows CETerm to control and cooperate with

other applications. The Window object is a property of the OS object;

OS.Window.

WARNING: Altering window visibility and input states can make your device
unusable and require a device reset. Be sure you understand the
effect of changing values.

Methods

The following methods are available

Method Action

Enablelnput Enable or disable input to a window.

Find Find a named window if it exists.

GetDesktop Get the handle for the desktop window.

GetList Get a list of top-level windows.

GetParent Get the parent of the specified window.

GetRelative Get a relative (child or sibling) of the specified window.
GetSelf Get the handle of the top-level CETerm window.
GetText Get the text of the specified window.

CETerm Scripting Guide

Page 77

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

GetTopmost Get the window with which the user is working.
IsEnabled Check if window is enabled for input.

IsVisible Check if window is visible.

IsWindow Check if window handle is valid.

PostMessage Post a message to a window.

SendMessage Send a message to a window.

SetTopmost Set a window as the current working window.
Show Show or hide a window.

status = Enablelnput (windowHandle, enabled)

Enable or disable input to a window. If enabled is true then mouse and keyboard
input is enabled. Return true if window was previously disabled or false if
window was previously enabled. Check the Window property LastError to
determine the success of the method.

windowHandle = Find (windowClass, windowName)

Find the handle of the top-level window that matches the given window class or
window name. Either argument may be an empty string. Return the non-zero
window handle or O if not found. Use the Window property LastError to get
additional error information.

windowHandle = GetDesktop ()
Get the handle of the desktop window.

windowL.ist = GetL.ist ()

Return a list of current top-level windows. The returned list is in the form of a
JavaScript array literal [...] which contains JavaScript object literals {...}
containing information about each window. See Section 2.8 for details about
handling JavaScript literals. Return null if error. Use the Window property
LastError to get additional error information.

The returned literal has the following format:

[{hwnd:0x7c010680, processID:0x0, text:"CursorWindow"},
{hwnd:0x7c012d70, processID:0xf79f7%aa, text:""},
{hwnd:0x7c01cf20, processID:0x77452dda, text:"Edit Script 6"},
{hwnd:0x7c01bb70, processID:0x77452dda, text:"Scripting"},
{hwnd:0x7c0189c0, processID:0x77452dda, text:"S1l - Configure"},

CETerm Scripting Guide Page 78

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

{hwnd:0x7c015c50, processID:0x77452dda, text:"CETerm - S1"},
{hwnd:0x7c012320, processID:0xb7f67176, text:"Input Panel"},
{hwnd:0x7c011d40, processID:0xb79f7e32, text:"WinCENotify"}]

windowHandle = GetParent (windowHandle)

Get the handle of the parent window. If the window is a child window, the return
value is a handle to the parent window. If the window is a top-level window, the
return value is a handle to the owner window. If the window is a top-level
unowned window or if the method fails, the return value is 0. Use the Window
property LastError to get additional error information and differentiate between
failure and a top-level unowned window.

windowHandle = GetRelative (windowHandle, relation)

Get the handle of a window with the relation to the specified window. The
relation values are integers and are listed in Appendix 4. Return the window
handle or zero if no-such-window or method fails. Use the Window property
LastError to get additional error information and differentiate between failure and
no-such-window.

windowHandle = GetSelf ()
Get the handle of the top-level CETerm window.

text = GetText (windowHandle)

Get the text of the specified window. Return the text of the window’s title bar or
the text contents if the window is a control. Return null if function fails. Use the
Window property LastError to get additional error information.

windowHandle = GetTopmost ()

Get the window with which the user is working. This is also called the foreground
window. May return O if no window is currently active. Use the Window property
LastError to get additional error information.

status = IsEnabled (windowHandle)

Check the input status of the specified window. Return true if the window is
accepting input or false if the window is not accepting input. Use the Window
property LastError to get additional error information.

CETerm Scripting Guide Page 79

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

status = IsVisible (windowHandle)
Check the visibility state of the specified window. Return true if the window may
be visible or false if the window is hidden. A window in the “visible” state may still
be hidden from view by other windows. Use the Window property LastError to get
additional error information.

status = IsWindow (windowHandle)
Check if the specified window handle is valid. Return true if the window handle
identifies an existing window or false if the window does not exist. Use the
Window property LastError to get additional error information.

status = PostMessage (windowHandle, message, wParam, IParam)

Post a message to the specified window. Return the status of the posting, not
the status of processing the message. This feature is primarily intended to work
with applications that document public messages that may be used for control or
communication. Valid message values and parameters are not documented in
this manual. Use the Window property LastError to get additional error
information.

WARNING: Posting an ill-formed message may cause the receiving application
to fail. There are very few messages that are valid from this method.

status = SendMessage (windowHandle, message, wParam, IParam)

Send a message to the specified window. Return the integer status of the
message execution. This feature is primarily intended to work with applications
that document public messages that may be used for control or communication.
Valid message values and parameters are not documented in this manual. Use
the Window property LastError to get additional error information.

WARNING: Sending an ill-formed message may cause the receiving application
to fail. There are very few messages that are valid from this method.
Beware that some messages return complex results and these are not
returned to the caller and may cause CETerm to fail.

CETerm Scripting Guide Page 80

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

status = SetTopmost (windowHandle)

Set the specified window to be the topmost and active window. This is also
called the foreground window. Return true on success or false on failure.

status = Show (windowHandle, visible)

Set the visibility state of the specified window. If visible is true, the window is set
to the visible state. If visible is false, the window is hidden. Return true if the
window was previously visible or false if the window was previously hidden.

Properties

The Window object has the following properties.

Property Description Values
LastError Returns the last error value associated | unsigned
with any Window operation. (read only) | integer
SendMessageTimeout Timeout in milliseconds of integer
SendMessage method. Default value is
5000.
CETerm Scripting Guide Page 81

4.0 CETerm Script Events

This section describes the script events within the CETerm script engine. These
events provide ways to trigger event handlers when various conditions occur in
CETerm. The event handlers are arbitrary scripts.

The event model in CETerm uses specific event handler names to bind events to
handlers. If the event handler function (e.g., “OnBarcodeRead”) is defined in the
script engine, it will be executed when the event occurs. There is no special
command required to register or bind the function to the event. Event handlers
can be re-defined at any time. If the handler is no longer needed, the function
can be re-defined as empty.

Events play a very important role for scripting in CETerm. Just as in the standard
web browser, a script cannot run continuously, or it will prevent user interaction
and other program actions. The script engine acts like a “virtual user”. When a
script is executing, CETerm will seem unresponsive. Typically, a script will do a
little bit of work and then exit. This way, CETerm is always ready to respond to
the user or host actions. Events and timers are used to start or re-start a script to
do the next bit of work.

The “expect” script described in Section 2.6 is a good example of using a timer to
automate multiple steps. The events described in this section are the second
major technique for running a script to satisfy a condition.

Event Fired when...

OnBarcodeRead Barcode read.

OnDocumentDone New web page loads.

OnIBMCommand Receives special command in IBM data stream.
OnKeyboardStateChange | Keyboard state changes in TE session.
OnNavigateError Web navigation fails.

OnNavigateRequest Web navigation begins.

OnNetCheckFailed Fails to complete network check to host.
OnProgramExit CETerm exits.

OnProgramStart CETerm first starts.

OnSerialPortEvent Serial port status changes.
OnSessionConnect Session connects to host.
OnSessionDisconnect User disconnects session from host.
OnSessionDisconnected | Session disconnected by host.
OnSessionReceive TE session receives data from host.
OnSessionSwitch Active session changes.

OnStylusDown Stylus tap on screen.

OnTriggerEvent Hardware trigger status changes.
OnVTCommand Receives special command in VT data stream.
OnWakeup Device resumes after a suspend.

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

4.1 THE ONBARCODEREAD EVENT
The onBarcodeRead event is fired when a barcode is successfully read. The
handler can pre-process the data or check other conditions prior to passing it on
to a TE or browser session.

Syntax
function OnBarcodeRead (session, data, source, type, date, time

)

session — index of currently active session

data — barcode data

source — source of barcode. Typically a constant scanner name.
type — labeltype of barcode. See Appendix 3 for values.

date — date of barcode read.

time — time of barcode read.

Example

Several samples for OnBarcodeRead were given in Section 2.5. Following is an
example that checks the RF connection before submitting the data to the host.
This notifies the user that the barcode was not received by the host and instructs
the user to return to RF coverage.

/* OnBarcodeRead */
function OnBarcodeRead (session, data, source, type, date, time)
{
// Check RF status
var status = CETerm.GetProperty ("device.rf.status");
if (status <= 0)
{
OS.Alert("No RF signal detected.\n" +
"Barcode discarded.\n" +
"Return to RF coverage.");
// Discard barcode
return 1;

}

// Send barcode to emulator
CETerm.SendText (data, session);

CETerm Scripting Guide Page 83

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

// Return 1 if handled data here
return 1;

4.2 THE ONDOCUMENTDONE EVENT

The onDocumentDone event is fired when a new webpage has completed
loading into a web browser session. The handler can add META tag definitions,
examine or alter the Document Object Model (DOM), or add JavaScript methods
to the page. This event allows CETerm to enhance a web page for mobile data
collection that was not originally designed for such.

Syntax

function OnDocumentDone (session)

session — index of browser session which completed page load.

Example

This example shows how several META tags can be added to a web page. We
will add a “PowerOn” handler, a key remapping, and information item tags to
position the RF indicator at a special location. The “PowerOn” handler is often
used to navigate to a specific page, such as a login page, when the device
resumes. The RF indicator tags will restore a specific location, but could be used
to alter the RF indicator location depending on the current page.

/* OnDocumentDone */
function OnDocumentDone (session)

{

var b = CETerm.Session(session) .Browser;

// Do not process the initial about:blank page
if (!b.Document.URL.match ("about:blank"))
{
// Add PowerOn META handler
b.AddMetaltem("PowerOn",
"Javascript:alert (\"My PowerOn\");");

// Insert new JavaScript function
b.RunScript ("function myfl () {alert (\"F1 Function\"™);}");

// Add Key mapping to inserted function
b.AddMetaltem("OnKey F1", "Javascript:myfl();");

// Position RF signal indicator
b.AddMetaltem("Signal", "x=195");

CETerm Scripting Guide Page 84

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

b.AddMetaltem("Signal", "y=100");

// Update information items for location to take effect
CETerm.PostIDA("IDA INFO REFRESH", session);
}

4.3 THE ONIBMCOMMAND EVENT

The onIBMCommand event is fired when a special extended command format is
received in an IBM emulation session screen. Extended commands are
documented elsewhere, but basically this event requires the two characters “#X”
starting in the second column of the first row. The CETerm configuration option
“‘Extended Commands” must be enabled for this event to fire. The handler script
may perform any desired actions. Typically, the screen text contains additional
information used by the handler.

Syntax

function OnIBMCommand (session, command)

session — index of session receiving the command
command — specified command (e.g., “#X”)

Example

This example looks at the data following the command and activates an FTP file
transfer.

/* OnIBMCommand */
function OnIBMCommand (session, command)
{
// Get full line from screen
// Expect: #X|FTP|myserver|localfilename|remotefilename
var linel = CETerm.Session(session).Screen.GetTextLine(1);
var args = linel.split("|");

// Activate FTP
if ("FTP" === args[l])
{
var ftp = OS.Network.FTP;
if (0 === ftp.Login(args[2], "ftpuser", "secret"))
{
ftp.PutFile(args[3], args[4]);
ftp.Logout () ;

CETerm Scripting Guide Page 85

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

// Submit screen to move to next action
CETerm.PostIDA("IDA ENTER", session);

4.4 THE ONKEYBOARDSTATECHANGE EVENT

The OnKeyboardStateChange event is fired when the state of the keyboard is
changed by a user or host action. Typically this event is only used with IBM
sessions. A VT session may generate this event only if custom escape
sequences lock the keyboard.

Syntax

function OnKeyboardStateChange (session, state)

session — index of currently active session
state — new keyboard state

Example
This example disables the scanner when the keyboard enters the locked mode.

/* OnKeyboardStateChange */

var IBM KEYBOARD HARDWARE ERROR = 0;
var IBM KEYBOARD NORMAI, LOCKED = 1;
var IBM KEYBOARD NORMAI, UNLOCKED =
var IBM KEYBOARD POWER ON = 3;

var IBM KEYBOARD PRE HELP ERROR = 4;

var IBM KEYBOARD POST HELP ERROR = 5;
var IBM KEYBOARD SS MESSAGE = 6;

var IBM KEYBOARD SYSTEM REQUEST = 7;

2;

var PreviousKeyboardState = [0,0,0,0,0,01;

function OnKeyboardStateChange(session, state)
{
// Disable scanner if keyboard is locked.
if (state === IBM KEYBOARD NORMAL UNLOCKED)
{
if (PreviousKeyboardState[session] !==
IBM KEYBOARD NORMAL UNLOCKED)

CETerm.PostIDA("IDA SCAN RESUME", 0);

CETerm Scripting Guide Page 86

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

else
{
if (PreviousKeyboardState[session] ===
IBM_KEYBOARD_NORMAL_UNLOCKED)

{
CETerm.PostIDA("IDA SCAN SUSPEND", 0);

}
}

// Save new state
PreviousKeyboardState[session] = state;

4.5 THE ONNAVIGATEERROR EVENT

The OnNavigateError eventis fired if the browser fails to complete a
navigation. Typically, the error handler will redirect the web browser to a “file:”
URL on the device for error recovery. This event may fire if the device loses RF
coverage during a navigation or the web server crashes. Itis a good practice to
use the CETerm “Check Network Before Send” feature to validate RF coverage
prior to submitting the navigation request and use the OnNavigateError for
additional error handling.

Syntax

function OnNavigateError (session, params)

session — index of browser session which failed to navigate.
params — navigation error parameters, including the error number and URL.

The params argument is formatted as URL parameters and has the form:
error=0x800C0005&url=http://192.168.1.20/application.exe?state=3&scan=0

Everything after ur1= in the params argument is the URL that failed to
navigate, along with all the parameters of that URL. The error values are
standard Microsoft browser status codes and are defined in Appendix 4.

Example for Windows CE 5.0 devices

This example shows how to redirect a web browser to a static URL on the
device.

/* OnNavigateError */
function OnNavigateError (session, params)

{

CETerm Scripting Guide Page 87

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

// Save params in text 3x where x is session index

// This is required by CE 5.0 devices which do not pass
// parameters to a "file:" URL.

CETerm. SetProperty("app.usertext.3" + session, params);

// Navigate to static error page
var b = CETerm.Session(session) .Browser;
b.Navigate("file:///error.htm");

Note the CETerm. SetProperty () call. This method saves the params in
persistent memory for later use by the "error.htm" web page. The reason to do
this is because the parameters are discarded by the Windows CE browser when
navigating to a "file:" resource. The error web page can retrieve the params

using:

var property = "app.usertext.3" + external.sessionindex;
var params = external.CETerm.GetProperty (property);

Using the URL, the error page can re-attempt the navigation or decide on other
error recovery. Please note that the "User Text x" is used for several purposes in
CETerm, including key remapping. Be sure that this use does not collide with
other uses in your configuration.

Example for Windows Mobile devices

Handheld devices using Windows Mobile can use a different technique to pass
on the params URL. For these devices, the parameters of a “file:” URL are
available within the browser. The error parameters can simply be passed on to
the static page without using a “User Text x” variable.

/* OnNavigateError */

function OnNavigateError (session, params)

{
// Navigate to static error page
var b = CETerm.Session(session) .Browser;
b.Navigate("file:///error.htm?" + params);

The error page can access the failed URL parameters using normal techniques

to re-attempt the navigation or decide on other error recovery.
var params = document.location.search;

CETerm Scripting Guide Page 88

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

4.6 THE ONNAVIGATEREQUEST EVENT

The OnNavigateRequest event is fired before the browser begins a navigation.
Normally, all navigation control should be done within the HTML of a page. In
rare cases when the pages cannot be modified, this handler can be used to
control navigations. This handler can cancel a navigation or request an
alternative navigation.

Syntax

function OnNavigateRequest (session, url)

session — index of browser session.
url — target URL of navigation request.

The return value of OnNavigateRequest is used to control the navigation. A
return value of O will allow the navigation to continue, a value greater than O will
cancel the navigation.

Example
This example shows how to control navigation.

/* OnNavigateRequest */
function OnNavigateRequest (session, url)
{
// Prevent unwanted URL
if (url.match("forbidden.htm")) return 1;

// Require password
if (url.match("protected.htm"))

{
var t = CETerm.TextInput;

t.Title = "Administrator Login";

t.Prompt = "Please enter your password:";
t.PasswordMode = true;

t.Input = ""; // Clear current password

var s = t.GetInput();
if (s !== [t.Input !== "secret")
{
// Bad password, cancel
return 1;
}
t.Input = ""; // Clear password

CETerm Scripting Guide Page 89

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

// Continue all other navigations
return 0;

4.7 THE ONNETCHECKFAILED EVENT

The OnNetCheckFailed eventis fired if a “Network Check on Send” fails to
detect the host system and the Network Check Action is
“‘ida://IDA_SCRIPT_ON_NETCHECKFAILED”. Other Network Check Actions
are possible, including direct naming of an error URL. See the User Manual for
more information. Typically, this error handler will redirect the web browser to a
“file:” URL on the device for error recovery.

Syntax
function OnNetCheckFailed (session, pendingURL)

session — index of browser session attempting navigation.
pendingURL — pending URL for navigation.

The pendingURL is the destination that the user requested but which has been
deferred because the host was not contacted. The event handler can re-try the
navigation.

Example

This example is nearly identical to the onNavigateError handler except that
there is no error number in the pendingURL. This handler
shows how to redirect a Windows CE web browser to a static URL on the device.

/* OnNetCheckFailed */
function OnNetCheckFailed (session, pendingURL)
{
// Save pendingURL in text 3x where x is session index
// This is required by CE 5.0 devices which do not pass
// parameters to a "file:" URL.
CETerm.SetProperty("app.usertext.3" + session, pendingURL) ;

// Navigate to static error page
var b = CETerm.Session(session) .Browser;
b.Navigate("file:///error.htm");

}

See the onNavigateError example above for additional details.

CETerm Scripting Guide Page 90

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

4.8 THE ONPROGRAMEXIT EVENT

The OnProgramExit eventis fired just before CETerm exits. This handler can
abort the exit to keep CETerm running.

Syntax

function OnProgramkExit ()

This handler has no arguments. The function returns 0 to continue with the exit
or 1 to abort the exit.

Example
This example prevents the CETerm exit if any session is connected.

/* OnProgramExit */
function OnProgramExit ()

{
// Don’t exit if any session is connected
for (var 1i=1; 1i<=CETerm.MaxSession; ++1)

{

if (CETerm.Session (i) .IsConnected)

{

// Switch to first connected session
CETerm.PostIDA("IDA SESSION s" + i, 0);

// Abort exit
return 1;

}

// OK to exit
return 0;

4.9 THE ONPROGRAMSTART EVENT

The onProgramStart event is fired just before CETerm starts processing user
input. All command line arguments are processed and auto-connect sessions
are connected before this event.

CETerm Scripting Guide Page 91

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Syntax

function OnProgramStart ()

This handler has no arguments and any return value is ignored.

Example
This example makes sure Session 3 is active when CETerm starts.

/* OnProgramStart */
function OnProgramStart ()

{
// Allways switch to Session 3
CETerm.PostIDA("IDA SESSION sS3", 0);

4.10 THE ONSERIALPORTEVENT EVENT

The OnSerialPortEvent event is fired when a serial port changes state. The
state change may be due to the arrival of data or due to the change of a signal
line state. See Chapter 5 for details about OnSerialPortEvent.

Syntax

function OnSerialPortEvent (portIndex, eventMask)

portindex — index of serial port object signaling the event
eventMask — mask indicating event(s) that occurred

Example
This example shows the skeleton of the handler. See Chapter 5 for details.

/* OnSerialPortEvent */
function OnSerialPortEvent (portIndex, eventMask)
{
var EV _RXCHAR = 0x0001; // Any Character received
if (portIndex === 3 && (eventMask & EV_RXCHAR))
{
// Read data from port 3
MyReadData (portIndex);

CETerm Scripting Guide Page 92

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

4.11 THE ONSESSIONCONNECT EVENT

The OnSessionConnect eventis fired when a session initially connects to the
specified host. The handler can be used to initiate an automated login using the
“‘expect” script and “ExpectMonitor” class.

Syntax

function OnSessionConnect (session)

session — index of session which connected.

Example

An example using OnSessionConnect to start the automated login was shown
above in Section 2.6 and is repeated below. Please refer to Section 2.6 for
details. The “expect” script is discussed in Section 5.1.

/* OnSessionConnect */
function OnSessionConnect (session)

{

// Set login information

var myusername = "joeuser";
var mypassword = "secret";
var waittime = 8000; // Milliseconds waiting for each text

// Only login session 1
if (session == 1)
{
// Look for "login" then "password"
expect (session, waittime, "Login", myusername + "\r",
"Password", mypassword + "\r");

4.12 THE ONSESSIONDISCONNECT EVENT

The OnSessionDisconnect event is fired when a session is disconnected by a
user action. The handler can be used to switch to another session, exit, or
perform other cleanup tasks.

CETerm Scripting Guide Page 93

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Syntax

function OnSessionDisconnect (session)

session — index of session which was disconnected by user.

Example

This example will switch to the next connected session when the current session
is disconnected. If there are no other connected sessions, then CETerm will exit.

/* OnSessionDisconnect */
function OnSessionDisconnect (session)

{

// Switch to next connected session
CETerm. SendIDA ("IDA_SESSION_NEXTLIVE", 0),

if (CETerm.ActiveSession == session)
{

// Still on current session, no others connected.
CETerm.PostIDA("IDA PROGRAM EXIT", 0);

4.13 THE ONSESSIONDISCONNECTED EVENT

The OnSessionDisconnected eventis fired when a terminal emulation (TE)
session is disconnected by the remote host. The handler can be used to attempt
to reconnect to the host or perform other cleanup tasks.

Syntax

function OnSessionDisconnected (session)

session — index of session which was disconnected by remote host.

Example

This example will check for RF coverage and attempt to reconnect if RF is
detected.

/* OnSessionDisconnected */
function OnSessionDisconnected (session)

CETerm Scripting Guide Page 94

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

// Check RF status
var status = CETerm.GetProperty ("device.rf.status");
if (status <= 0)
{
OS.Alert("No RF signal detected.\n" +
"Return to RF coverage and reconnect.");
return;
}
// Attempt to reconnect to host
CETerm.PostIDA("IDA SESSION CONNECT", session);

4.14 THE ONSESSIONRECEIVE EVENT

The OnSessionReceive eventis fired when a terminal emulation session

receives data from the connected host. The handler can be used to detect
screen content such as an error message and perform a desired action.

Syntax

function OnSessionReceive (session, count)

session — index of session which received data.
count — count of bytes received.

Example

This example will check the screen content on line 24 looking for an error
message. If found, the error is displayed as a popup message.

/* OnSessionReceive */
function OnSessionReceive (session, count)
{
// Get line of text
var s = CETerm.Session(session).Screen;
var line = s.GetTextLine(24);

// Do a regular expression case-insensitive match
if (line.match(/error/i))
{
OS.Alert("Error: " + line);
}

CETerm Scripting Guide

Page 95

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

4.15 THE ONSESSIONSWITCH EVENT

The OnSessionSwitch eventis fired when the active session changes. The
handler can be used to perform a session specific action.

Syntax

function OnSessionSwitch (session, previousSession)

session — index of session which became active.
previousSession — index of session which was previously active.

Example

This example will reposition the battery information item depending on which
browser session is active.

/* OnSessionSwitch */
function OnSessionSwitch (session, previousSession)
{

var b = CETerm.Session(session) .Browser;

if (b.DocLoaded)
{

var x = (session == 1) ? 195 : 10;
var y = (session == 1) ? 10 : 100;
b.AddMetaltem("Battery", "x=" + x);
b.AddMetaltem("Battery", "y=" + vy);

CETerm.PostIDA("IDA INFO REFRESH", 0);

4.16 THE ONSTYLUSDOWN EVENT

The onStylusDown eventis fired when the user taps a terminal emulation
screen with a stylus or finger. This event is only fired if the tap does not activate
a standard “touch” feature. All touch features can be disabled in the CETerm
configuration. This handler can be used to activate user-defined hot-spots.

CETerm Scripting Guide Page 96

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Syntax

function OnStylusDown (session, row, column)

session — index of currently active session
row — row of screen tap
column — column of screen tap.

Example

Several samples for OnStylusDown were given in Section 2.7. Following is an
example that starts a barcode scan if the row contains the word “scan”. Not all
hardware devices support a scan trigger by script. If tapping on an IBM screen,
you must tap on an input field in the row, or the focus will not be in an input field
when the scan is sent to the session. Of course the “OnBarcodeRead” handler
could be used to force the scanned data into a preferred input field.

/* OnStylusDown */
function OnStylusDown (session, row, column)
{

var screen = CETerm.Session(session) .Screen;

// Get row of text
var text = screen.GetTextLine(row);

// Look for "scan" as case-insensitive match
if (text.match(/scan/i))

{
CETerm.PostIDA("IDA SCAN TRIGGER", 0);

}

4.17 THE ONTRIGGEREVENT EVENT
The onTriggerEvent event is fired when the hardware trigger state changes.

Syntax
function OnTriggerEvent (flags, id)

flags — flags describing state change
id — trigger id

CETerm Scripting Guide Page 97

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Example

This example activates a corresponding trigger handling function in the current
browser session.

/* OnTriggerEvent */
function OnTriggerEvent (flags, id)
{

var index = CETerm.ActiveSession;
var Session = CETerm.Session (index) ;

if (Session.Browser.Document != null)

{
// Current session is browser session.
// Hand off processing to web page.
var script = "OnTriggerEvent ("+ flags + "," + id + ");";

Session.Browser.RunScript (script);

4.18 THE ONVTCOMMAND EVENT

The onvTCommand event is fired when a special command format is received by
a VT emulation session. The command includes a variable number of arguments
that depends on the received command. The handler script may perform any
desired actions. The screen text may contain additional information used by the
handler.

Syntax

function OnVTCommand (session, command, argl, arg2, arg3, argd)

session — index of session receiving the command
command — activating command, “ESCBangS”, “ESCTilda”, “APC”,

“‘OSC”, “PM”, “PUT”, “PU2”
argl — command argument. Terminating character for ESCTilda. Up to 16
arguments with values which range between 0 and 99 for ESCBangsS.
Unspecified ESCBangS arguments have the value -99. String with content for
other commands.

Example
This example shows how to process the various possible arguments.

CETerm Scripting Guide Page 98

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

/* OnVTCommand */
function OnVTCommand(session, command, argl, arg2, arg3, argd)
{
if (command === "PM")
{
// Format: PM text ST or ESC ©~ text ESC \
// argl contains a text string
// Other args are undefined
if (argl.charAt(Q) === "1")
{
// Reply with special text
CETerm.SendText ("TDT;001;038\n", session);
}
}
else if (command === "ESCBangS")
{
// Format: ESC ! 1;2;3;4;5;6;7;8;9;0;1;2;3;4;5
// Format (only two specified args): ESC ! 1;2
// 16 arguments are defined
// Arguments unspecified in the data stream have value -99
// You can put more "argX" arguments in the function
// definition or use the special JavaScript "arguments[]"
// array to access the values:

S
S

// argl === arguments[2]
// arg2 === arguments[3]
/] ...

// arglée === arguments[1l7]

// Process command

}

else i1f (command === "ESCTilda")

{
// Format: ESC ~ E or ESC ~ S
// argl is 69 (E) or 83 (9)
// Process command

4.19 THE ONWAKEUP EVENT

The OnWakeup event is fired when the device resumes after suspending. The
handler can be used to perform any action, such as waiting for RF coverage or
switching to a specific session.

Syntax

function OnWakeup ()

CETerm Scripting Guide Page 99

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Example
This example will wait for RF coverage to resume and sound a tone when it is
available. While waiting, a “tic” sound will be made periodically to indicate the
check. This sample is more complex than needed, but it illustrates how to use
global variables and timers to periodically check state.

/* RFSoundOnConnect */

// Global control variables

var
var
var
var
var

RFWakeupSoundTimerID = 0;

RFWakeupSoundContinue = 0;

RFWakeupSoundInterval = 200; // milliseconds
RFWakeupSoundCountMaximum = 50; // 50*200 = 10 seconds
RFWakeupSoundCount = 0;

function OnWakeup ()

{

// Start with wakeup event
RFWakeupSoundStart () ;

}

// Function to start RF check
function RFWakeupSoundStart ()

{

if

{

}

(!RFWakeupSoundContinue)

RFWakeupSoundContinue = 1;

if (RFWakeupSoundTimerID != 0)

{
// Stop and clear any previous check
CETerm.ClearTimeout (REFWakeupSoundTimerID) ;
RFWakeupSoundTimerID = 0;

}

RFWakeupSoundCount = 0;

// Schedule first RF check

RFWakeupSoundTimerID = CETerm.SetTimeout (
"RFWakeupSoundOnTimer () ;",
RFWakeupSoundInterval);

// Function to check RF and notify user
function RFWakeupSoundOnTimer ()

{

RFWakeupSoundTimerID = O;
RFWakeupSoundCount++;

// Get and check info

var rfStatus = CETerm.GetProperty("device.rf.status");

CETerm Scripting Guide

Page 100

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

if (rfStatus > 0)
{
// RF detected
// Delayed playsound, increase delay for WEP if needed
CETerm.SetTimeout ("RFWakeupSoundPlay();", 100);
RFWakeupSoundContinue = 0;
}
else 1if (RFWakeupSoundCount > RFWakeupSoundCountMaximum)
{
// Failed to get RF, show failure message.
OS.Alert("Failed to detect RF signal.\n" +
"Return to coverage area.");
RFWakeupSoundContinue = 0;
}

if (RFWakeupSoundContinue)
{
if (! (RFWakeupSoundCount % 5))
{
// Play "tick" sound while check is running.
CETerm.PlaySound("MenuPop");
}

// Schedule next RF check

RFWakeupSoundTimerID = CETerm.SetTimeout (
"RFWakeupSoundOnTimer ();",
RFWakeupSoundInterval);

function RFWakeupSoundPlay ()

{
// Select any wave file on device for notification.
CETerm.PlaySound("infbeg");

}

CETerm Scripting Guide Page 101

5.0 Scripting Techniques and Tips

This section describes ways that scripting can extend the capabilities of CETerm.
Tips for script development are also presented.

5.1 EXPECT AND EXPECTMONITOR FOR AUTOMATING TASKS

The “expect” script and “ExpectMonitor” class provide a general purpose
“‘prompt-and-response” tool. Using “expect” for automated login was described in
Section 2.6. Here we provide the complete listing of the scripts and discuss
other options for use.

5.1.1 Expect Script

The “expect” script illustrates a couple of powerful JavaScript constructs. Even
though the expect function has 4 defined arguments in the function declaration, it
is possible to pass an unlimited number of arguments. All arguments are
accessible through the special “arguments” variable. This script also shows the
object-oriented aspects of JavaScript by creating a new ExpectMonitor class.

/* expect */

//

// This script will "expect" a text prompt on the screen and
// respond with text or action.

//

// Syntax: expect(session, timeout,

// expectedText, response

// [, expectedText2, response2])
//

// session is the session index

// timeout is the wait interval for each text in milliseconds
// expectedText can be a string or regular expression

// Response can be a text response or a function

function expect(session, timeout, expectedText, response)
{

// Build array from arguments

// This technique will accumulate any

// number of expect/response pairs

var TargetResponseArray = [];

for (var i=2; i < arguments.length; i++)

{

TargetResponseArray.push (arguments[i]);

}

// Create an ExpectMonitor class that manages the actions
var EM = new ExpectMonitor (session, timeout,
TargetResponseArray);

// Set optional ExpectMonitor behaviors
//EM.silent = true;

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

//EM.OnDone = function (success) { OS.Alert("Done."

// Start check
EM.Start () ;

5.1.2 ExpectMonitor Class

) 1

The “ExpectMonitor” class illustrates the use of a prototype in JavaScript. This
class also manages all instances of itself to restrict the number of objects that
can be created.

/*
/7
//
//
/7
/7
/7
//

ExpectMonitor */
ExpectMonitor class
The ExpectMonitor class manages the expect/action

sequence for a session.
Only one ExpectMonitor is allowed per session.

function ExpectMonitor (session, timeout, targetactions

{

// Validate session
if (session < 1 || session > 4)
{

return null;

}

this.session = session;
this.timeout = timeout;
this.args = targetactions;

this.state = 0;

this.timer = null;

this.checkCount = 0;

this.totalCheckCount = 0;

this.maxCheckCount = this.timeout / this.checkDelta;

// Abort any existing object
if (ExpectMonitor.Instances[this.session] != null)

{

ExpectMonitor.Instances[this.session] .Abort ()

}

// Record this instance in the global array
ExpectMonitor.Instances[this.session] = this;

CETerm Scripting Guide

Page 103

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

function ExpectMonitor Check()
{
// Clear timer id
this.timer = null;

// 1If something to check for, check it.
var target = this.args[this.state];

if (target != null)
{
// Get all screen text
var screenText =
CETerm.Session(this.session) .Screen.GetText (1,1,-1,-1);

if (screenText != null && screenText.match(target))
{
// Found match
var action = this.args[this.state + 1];
this.checkCount = 0;

if (action != null)
{
// Check action
if (typeof action == "function")
{
// Run function action
// Pass session number as argument
action(this.session);
}
else if (typeof action == "string")
{
// Send text to session
CETerm.SendText (action, this.session);
}
else 1f (!this.silent)
{
OS.Alert ("Unknown action type for expect.");
}
}

// Check if another match expected
this.state +=2;
target = this.args[this.statel];

if (target != null)

{
// Schedule next check
this.Schedule () ;

}

else

{
// Done with this expect.

CETerm Scripting Guide Page 104

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

// Run any post-execution actions
if (typeof this.OnDone == "function")
{

this.OnDone(true);

// No match, schedule again
if (this.checkCount++ < this.maxCheckCount)
{

this.Schedule();
}
else
{

if (!this.silent)

{

0S.Alert("Expect failed to find text \"" +
target + "\"");

if (typeof this.OnDone == "function")

// Done but failed
this.OnDone(false);

function ExpectMonitor Schedule ()
{
// Schedule next check
var script = "ExpectMonitor.Instances[" +
this.session + "].Check()";
this.timer = CETerm.SetTimeout (script, this.checkDelta);

function ExpectMonitor Start()

{
// Cleanup first in case restarted
this.Abort () ;

// Initialize state
this.state = 0;
this.checkCount = 0;

this.Check () ;

CETerm Scripting Guide Page 105

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

function ExpectMonitor Abort ()

{
// Stop any timer

if (this.timer != null)

{

CETerm.ClearTimeout (this.timer);
this.timer = null;

}

// Set state to beyond reasonable range

this.state = 1000;

// Method definitions

ExpectMonitor.prototype.
ExpectMonitor.prototype.

ExpectMonitor.prototype

ExpectMonitor.prototype.

ExpectMonitor.prototype.

Check = ExpectMonitor Check;

.Start = ExpectMonitor Start;
Abort = ExpectMonitor Abort;

OnDone = null;

// Check every 200 milliseconds

ExpectMonitor.prototype.

// BAbout 10 seconds for

ExpectMonitor.prototype.

// Allow messages

ExpectMonitor.prototype.

// Class statics
ExpectMonitor.Instances

checkDelta = 200;
each text check
maxCheckCount = 50;

silent = false;

5.1.3 Automating Tasks with Expect

Any routine prompt-and-response task can be automated with “expect”.

Schedule = ExpectMonitor Schedule;

Examples may be navigating through a hierarchy of menus or closing an order
for shipping. In any case, you identify text to find on the screen and the user

input to take you to the next screen. Here is a simple menu traversal:

// Traverse menu

expect (CETerm.ActiveSession, 8000,
"3. Applications™, "3\r",

"2. Inventory",
"2. Put Back",

"2\1‘",
"2\ru) H

CETerm Scripting Guide

Page 106

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

This script can be entered into any script slot and bound to a key combination for
activation. You must also load the “expect” and “ExpectMonitor” in a script slot
which is marked “Load at Startup” so that the functions are available for use.

5.2 PRESENTING VISUAL FEEDBACK DURING SCRIPT EXECUTION

The Message object can be displayed during script execution when you want to
provide a visual indication of script progress. The Message object is
asynchronous and a script can continue running while it is displayed. This is
unlike the OS.Alert() message which stops script execution and requires user
confirmation. There is only one Message object within CETerm and you can
change the Message properties within any script.

WARNING: You must exercise caution when using the Message box to avoid
leaving it visible after a script is done. You may want to provide a
cleanup script that can be activated by the user to be sure the
message is hidden.

Following is an example of using the Message box. This message will display
itself for 5 seconds and then disappear.

/* Show message for 5 seconds */

var m = CETerm.Message;

.Text = "Processing data, please wait.";

.Timeout = 5;

.AbortButtonVisible = true; // does nothing because script exits
.Progress = 0;

.ProgressRunning = true;

.ProgressVisible = true;

.ProgressRate = 20;

.IsVisible = true;

32 323333:322:8

You may want to update the progress bar directly while processing data. Here is
an example.

/* Update progress and message during processing */
var m = CETerm.Message;

m.Text = "Processing data, please wait.";

m.Timeout = 0;

m.AbortButtonVisible = false;

m.ProgressRunning = false;

// Do some work

CETerm Scripting Guide Page 107

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

m.Progress = 0;
m.IsVisible = true;
0S.Sleep(2000); // Simulate work delay

// Update
m.Progress = 20;
m.Text = "Finding addresses, please wait.";

0S.Sleep(2000); // Simulate work delay

// Update
m.Progress = 50;
m.Text = "Sorting addresses, please wait.";

0S.Sleep(2000); // Simulate work delay

// Update
m.Progress = 90;
m.Text = "Almost done, please wait.";

0S.Sleep(2000); // Simulate work delay

// Done
m.IsVisible = false;

5.3 GETTING USER INPUT TO A SCRIPT

The Textlnput object can get user input for a script. Here is an example for
getting a password.

/* Get password from user */
var t = CETerm.TextInput;

.Title = "Warehouse Management";

.Prompt = "Please enter your password:";
.PasswordMode = true;

.Input = ""; // Clear current password

&t ot ot

var s t.GetInput ()

if (s == 1)

{
OS.Alert("Password is " + t.Input);
t.Input ", // Clear password

}

else

{
OS.Alert("Failed to get password.");

}

CETerm Scripting Guide Page 108

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

5.4 RUNNING AN EXTERNAL PROGRAM

It is possible to start an external program from the CETerm script engine. You
can wait for the program to finish or allow it to run independently. Often you will
run a program then return to CETerm when it exits. The Process object allows
you to manage running processes. The Event object can be used to schedule a
script to run when a process exits.

Here is an example to start the stylus calibration. Note that the arguments
depend on whether your device is Window CE or Windows Mobile.

/* Stylus Calibration */
// TODO: Uncomment the lines for your device

// For Windows CE 5.0 devices
0OS.Process.ExecuteAction ("\\Windows\\ctlpnl.exe",
"cplmain.cpl,9,1", "open");

// For Windows Mobile 5 devices
//0S.Process.ExecuteAction ("\\Windows\\ctlpnl.exe",
// "cplmain.cpl,7,0", "open");

5.5 UsSING TIMERS TO RUN SCRIPTS

Script execution timers are useful for several tasks. They can be used to:
1. Defer an action which is not possible in an event handler.
2. Perform an action periodically.
3. Provide an asynchronous script execution.
4. Split up a long running task.

We have already shown how the timer is used with the ExpectMonitor class and
task automation in Section 5.1. Event handlers should be limited to a small
amount of processing. If more processing is needed, it is best to schedule that
processing with SetTimeout() and allow the event handler to exit.

The following example will save data from memory to a flash file whenever a
particular URL is loaded.

/* OnDocumentDone */
function OnDocumentDone (session)

{

var b = CETerm.Session(session) .Browser;

if (b.Document.URL.match(/InventorySave/))

CETerm Scripting Guide Page 109

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

// Resume online inventory, and save cached
// data to file in background.
CETerm.SetTimeout ("BackgroundSave (" + session + ");", 10);

}

/* BackgroundSave */
function BackgroundSave(session)

{

var d = new ActiveXObject("Microsoft.XMLDOM") ;
d.loadXML (

"<?xml version=\"1.0\"?><Books>" +
"<Book QTY=\"10\"><Title>Beginning XML</Title></Book>" +

"<Book QTY=\"2\"><Title>Mastering XML</Title></Book>" +
"</Books>") ;

if (!0S.File.Write("\\FlashDisk\\inventory.xml", d.xml))
{

OS.Alert("Failed to save inventory.");

}

5.6 ACCESSING A FILE

The File automation object provides basic access to the Windows CE filesystem.
It supports whole-file read and write, but does not support the concept of an

“open” file with piecewise read or write. You can also create and delete file
directories.

This example shows how to append to an existing file by using a combination of
read and write. The new File.Append() method should now be used to append
data to files but this example still illustrate how to use the File object.

/* AppendToFile */
function AppendToFile(filename, addedContent)
{

var status = false;

var F = 0S.File;

// Check if file exists

var attributes = F.GetAttributes(filename);
if (attributes != OXFFFFFFFF)

{

var content F.Read(filename) ;
status = F.Write(filename, content + addedContent);

}

else

CETerm Scripting Guide Page 110

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

{
status = F.Write(filename, addedContent);

}

return status;

5.7 ACCESSING THE REGISTRY

The registry on a Windows CE device is a form of database which contains most
of the device configuration. The Registry automation object allows you to
read, write and delete registry keys and values.

WARNING: Altering the registry can make your device unusable. Be sure you
understand the effect of changing values and accept the responsibility.

The registry has a hierarchical structure. The “keys” are similar to file folders and
the “values” inside a key are similar to files in a folder. Several Registry
methods require a “fully qualified” value name which contains the full key
hierarchy, begins with a “root” key, and ends with the value name. This fully
qualified value name is similar to a file name with the full path.

The following example creates a new key and value and confirms that it can be
read.

/* NewRegistryDWORD */
function NewRegistryDWORD(keyname, valuename, valuedata)
{

var status = false;

var R = OS.Registry;

// Check if file exists
var fullyQualifiedKey = "HKEY_LOCAL_MACHINE\\" +
keyname + "\\" + valuename;

if (!R.WriteValue(fullyQualifiedKey, valuedata, "REG _DWORD"))
{

// Check if can read value

var readdata = R.ReadValue(fullyQualifiedKey);

if (readdata == valuedata)
{
status = true;
}
}
if (!status)

{

CETerm Scripting Guide Page 111

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

OS.Alert ("Failed to confirm write of " +
fullyQualifiedKey);
}

return status;

}
NewRegistryDWORD may be used as follows.

// Write a new value
NewRegistryDWORD ("SOFTWARE\\Naurtech\\Test", "TestDword", 510);

5.8 CONTROLLING A SERIAL PORT FROM CETERM

This section describes how to control serial ports with scripting in CETerm. Both
real (e.g., “COM1:”) and virtual (e.g., “BSP1:”) serial ports can be fully controlled
and accessed from emulation or browser sessions.

Serial ports can be opened for read-access, write-access, or both. All serial port
settings can be configured and events can be generated when data is available
or when signal lines change state.

The serialPort object can be used to integrate any serial device into CETerm;
such as a tethered scanner, scale, printer, Bluetooth scanner, or RFID reader.
As with all CETerm scripting features, we provide as much direct access to the
hardware as possible while hiding un-needed complexity. The SerialPort
object usage can be complex and the developer will need a good programming
foundation with event-driven concepts. Much of the SerialPort object
corresponds directly to the Windows Win32 serial port APIs. General information
can be found by searching msdn.microsoft.com with the keywords “basic serial
communication”.

5.8.1 SerialPort Objects

CETerm provides access to ten (10) SerialPort objects. By default, these
correspond to “COMO:” through “COM9:”, however, any SerialPort object can
be configured to control any named port, such as “BSP1:” for a virtual Bluetooth
port. The SerialPort objects can be used from both the CETerm script engine
and the browser scripting environment.

When a SserialPort object is first accessed within CETerm, it begins with all
default settings and will maintain all updated settings while CETerm is running.

CETerm Scripting Guide Page 112

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

The serialPort objects are obtained from the root Device object by

specifying the desired index:
var index = 0;
var sp = Device.SerialPort(index);

where sp is the reference to the serialPort object. Itis a good practice to use
a local variable to hold the reference inside a function when multiple port
operations must be performed.

5.8.2 Setting the PortName

By default, the SserialPort objects correspond to the “COMx:” ports. If you
plan to control “COM1:” then you should use Device.SerialPort (1). Ina
few cases, you may need to control a non-COM port, such as a virtual serial port
“BSP1:” for a Bluetooth device. In this case, you can use any SerialPort
object that is not being used for a COM port and set the PortName as needed.

var bluetoothPortIndex = 5;

var bluetoothPortName = "BSP1:";

var sp = Device.SerialPort(bluetoothPortIndex);
sp.PortName = bluetoothPortName;

It is also possible to specify COM ports with numbers greater than 9. Following
the Windows convention, prepend the string "$device\\" to the name. The double
backslash is required in JavaScript literal strings to specify a single backslash
character. For example, to open COM123, use the name "$device\COM123:".
You must set the name before opening the port.

5.8.3 Configuring SerialPort Properties

All serial port settings can be controlled through serialPort object properties.
Please refer to Section 3.15 for a complete list of properties. In general, you will
set needed properties before opening the port for the first time, but most
properties can be changed at any time.

Some properties are intuitive and control well known settings such as the baud
rate. Other properties, such as timeouts and “handshaking” can be more
complex and confusing. It can be helpful to search for information at
msdn.microsoft.com with the keywords “serial communications reference ce” to
learn additional details about Windows CE serial port control and behavior.

CETerm Scripting Guide Page 113

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

5.8.3.1 Configuring SerialPort Timeouts

When reading from the serial port, the default timeouts prevent blocking of the
read operation. Most reads should be performed in response to an
EV_RXCHAR event indicating that data is available from the attached device.
Often however, some timeout is needed to allow a complete data message to be
received. In these cases, we recommend a small
ReadTotalTimeoutConstant and perhaps a small
ReadTotalTimeoutMultiplier. Beware of a read request with a large
maxCount parameter because this can result in a large total timeout if
ReadTotalTimeoutMultiplier IS non-zero.

var portIndex = 5;

var sp = Device.SerialPort(portIndex);
sp.ReadTotalTimeoutConstant = 100;
sp.ReadTotalTimeoutMultiplier = 0;
sp.ReadIntervalTimeout = 0;

You should review the Microsoft documentation mentioned above and may need
to experiment with timeouts to configure the behavior that works best with your
peripheral and software architecture. For example, if you do not seem to get a
“‘complete message” during your read, you may need a larger timeout or may
need to save the partial data and perform another read at a later time.

When writing to the serial port, the default timeouts wait for all the data to be
written. In most cases this will be instantaneous because the data are placed in
the output buffer. If flow-control is enabled and transmission is blocked, the
buffer may fill and the write may block. You should use write timeouts if blocking
is possible so that CETerm is not fully blocked waiting for the write to complete.

var portIndex = 5;

var sp = Device.SerialPort(portIndex);
sp.WriteTotalTimeoutConstant = 100;
sp.WriteTotalTimeoutMultiplier = 10;

5.8.3.2 Configuring Common SerialPort Properties

In addition to the timeout properties discussed above, there are a couple of other
properties which must often be configured. These include the baud rate, flow
control and the EventMask. Here is a sample function used to configure and
open a port.

function OpenPort (portIndex)

{

CETerm Scripting Guide Page 114

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

var sp = Device.SerialPort(portIndex);

//

sp.

sp.
sp.

//
sp

sp.
sp.
sp.

/7
sp

sp.
sp.

/7

sp.
sp.

//

Port configuration
EventMask = EV_RXCHAR | EV_DSR;

XOFFOutputFlowControl = false;
XOFFInputFlowControl = false;

See Appendix 4 for contants

.BaudRate = CBR 9600;

DataBits = 8;
StopBits = ONESTOPBIT;
ParityMode = NOPARITY;

Set read timeouts
.ReadTotalTimeoutConstant = 100;
ReadIntervalTimeout = 50;
ReadTotalTimeoutMultiplier = 10;

Set write timeouts

WriteTotalTimeoutConstant = 100;
WriteTotalTimeoutMultiplier = 0;
Open port

return sp.Open(GENERIC READ | GENERIC WRITE);

5.8.4 Using WaitForEvent to Detect Data and State Changes

Section 4.0 describes why scripts cannot run continuously within CETerm. While
a script is blocking on a SerialPort.Read command waiting for data, CETerm
cannot respond to user input or perform other actions. Because of this, you must
keep read timeouts short to maintain a responsive program. Although you could
“poll” the serial port frequently to read newly arrived data, this is an inefficient
technique. The better technique is to use the SerialPort.WaitForEvent

method to run an event handler when data arrives or other states change.

To use WaitForEvent, you first configure the types of events you want to
detect. These are set as flag values in the EventMask property. For example,
to report events for the arrival of data and a change of the DSR state you would

use
var portIndex = 5;
var sp = Device.SerialPort(portIndex);

sp.EventMask = EV RXCHAR | EV DSR; // See Appendix 4

CETerm Scripting Guide

Page 115

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

You must also define an onSerialPortEvent handler that will be called when
the event occurs. Here is a sample handler:

// Serial port event handler
function OnSerialPortEvent (portIndex, eventMask)
{
if (portIndex === 5)
{
if (eventMask & EV_RXCHAR)

{
// Data 1is available, read and process
MyReadAndProcess (portIndex);

if (eventMask & EV_DSR)

// DSR state changed. Device entered sleep
MyCloseAndReopen (portIndex);
}
}

else if (portIndex === 3)

{
// Do something different for port 3

DoPort3Actions (eventMask);

This sample is just a template. It shows that there is only one
OnSerialPortEvent handler for all serial ports, and that you must further
direct the event to your own processing routines depending on the port signaling
the event. The event handler may be very complex. Some rich examples are
available on our website or through Naurtech Support.

After your handler is defined and the port opened, you call
SerialPort.WaitForEvent when you are ready to handle events. This
enables an event listener for the port. If the event is signaled by the port, the
event handler OnSerialPortEvent is invoked. The event handler is invoked
only once for each call of waitForEvent, but the handler parameters may
indicate multiple event conditions. Within the OnSerialPortEvent handler, or
other helper routines, a common pattern is to schedule the next
SerialPort.WaitForEvent. Although they share a common handler
function, you must call waitForEvent separately for each port, each time you
want to enable events for that port.

To cancel an active event listener use SerialPort.CancelWaitForEvent.

CETerm Scripting Guide Page 116

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

5.8.5 Using Single Byte Reads

One pattern which often works well for handling serial port data is to read a
single byte at a time and to accumulate data until a “complete message” can be
processed. Your application and peripheral device will define what a “complete
message” contains, but often messages are terminated by special characters
such as ASCII ETX. When using single-byte reads, you can keep read timeouts
short and optimize responsiveness.

To use this pattern, you would use WaitForEvent with the EV_RXCHAR event
and process the data within your handler. Here is a template for a single byte
read handler

// Serial port data handler
var responseData = [];
var responseState = "PRE STX";

function MyReadAndProcess(portIndex)

{

var c;

var readTries = 4;

var sp = Device.SerialPort(portIndex);
while (responseState !== "DONE" &&

{

readTries > 0)

c=sp.ReadByte () ;

if (c < 0)

{
// Read error, try again
0S.Sleep(20);
--readTries;
continue;

}

// Reset tries after successful
readTries = 4;

switch (c)

{

case ASCII STX:
// Start of response.
responseState = "DATA";
responseData = [];
break;

case ASCITI ETX:
// End of content
responseState = "DONE";
break;

read

CETerm Scripting Guide

Page 117

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

default:
if (responseState === "DATA")
{
// Save character
responseData.push(String.fromCharCode(c));
}
break;
}
}
if (responseState === "DONE")

{
// Process message
// Maybe schedule another data detection after processed.
MyProcessMessage (responseData);
responseState = "PRE STX";

}

else

{ // Schedule another data detection to complete message
sp.WaitForEvent () ;

}

5.9 WRITING EFFICIENT SCRIPTS

Good programming practices should be used when developing scripts for
CETerm. In general, it is important to conserve memory, minimize script
compilations, and limit execution times. Please refer to a JavaScript
programming book for more information. We recommend “JavaScript: The
Definitive Guide (5th Edition)” by David Flanagan. The following URL is an
excellent starting point for in-depth details about JavaScript and good
programming practices: http://javascript.crockford.com/.

5.9.1 Use Local Variables

Whenever possible, use local variables within functions and declare them with
the var keyword, like this:

var status;
var message = "hello";
var i, 3, k;

If you fail to use the var keyword, then JavaScript automatically creates a global
variable with that name if it has not already been declared outside a function.

CETerm Scripting Guide Page 118

http://javascript.crockford.com/

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

JavaScript uses “garbage collection” to reclaim memory no longer in use.
Memory occupied by global variables may never be reclaimed, whereas local
variable memory can be reclaimed after a function call completes. Because the
JavaScript engine in CETerm is not reset frequently like a browser JavaScript
engine, it is more likely that poor programming practices could exhaust memory.

5.9.2 Encapsulate Code in Functions

Whenever possible, put multiple script actions within a function. This should
minimize compilations and make it easier to use local variables as described
above. For example, the following actions could be in a script which is bound to
a key-combination:

CETerm.SetProperty("sessionl.scanner.upca.enabled", true);
CETerm.SetProperty("sessionl.scanner.msi.enabled", false);
CETerm.SetProperty("sessionl.scanner.pdf4l7.enabled", false);
CETerm.PlayTone(8, 2000, 200);

CETerm.PlayTone(8, 1500, 200);

CETerm.PostIDA("IDA SCAN APPLYCONFIG", 0);

Or, the actions could be in a function which is loaded with “Load at Startup”

function enableUPCA ()

{
CETerm.SetProperty("sessionl.scanner.upca.enabled", true);
CETerm.SetProperty("sessionl.scanner.msi.enabled", false);
CETerm.SetProperty("sessionl.scanner.pdf4l7.enabled", false);
CETerm.PlayTone(8, 2000, 200);
CETerm.PlayTone(8, 1500, 200);
CETerm.PostIDA("IDA SCAN APPLYCONFIG", 0);

and the function call, in a separate script, could be bound to the key-
combination:

enableUPCA() ;

Using the later approach, the function is only compiled once, not each time the
key is pressed. In general, separating the function definitions from the invocation
is a good practice.

CETerm Scripting Guide Page 119

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

5.9.3 Limit Execution Time

Because the script engine acts like a “virtual user”, when a script is executing,
CETerm will seem unresponsive. You cannot have a script running continuously.
However, using events and timers, you can accomplish any task.

Do not disable the “Script Timeout” unless you are sure your script will not enter
an infinite loop.

5.10 DEBUGGING SCRIPTS
All but the most trivial script will require some amount of debugging.

5.10.1 Show Script Errors

The first step is to enable “Show Script Errors”. This will enable a popup
message for compilation and runtime errors. Compilation errors will usually be
seen when new scripts are added or upon script engine startup. It may not be
clear which script loaded at startup contains the error. In this case you may need
to open the edit dialog for each script and tap the “Test/Load” button to identify
the bad script.

The compilation error looks like this:
Microsoft JScript compilation error
[Line: 15 Col: 8] Expected ')’
OS.Alert (message);

Notice that the line of script presented looks OK. In this case, the missing ‘)’ is
on the previous line of script, but the error is detected as the compiler reaches
column 8 of this line and encounters the ‘O’. Be sure to look around the
indicated location to identify the source of the error.

A runtime error may be seen at startup if a script is performing some initialization,
or it may be seen while using CETerm. It can be difficult to identify the source of
the error if the script was fired by an event or timer. Most often, a runtime error
can be prevented by “defensive coding” where you are sure to check the validity
of arguments and object references.

The runtime error looks like this:

Microsoft JScript runtime error

CETerm Scripting Guide Page 120

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

[Line: 14 Col: 9] Object doesn’t support this property
or method.

Unfortunately, the JScript engine does not return the source code line for a
runtime error. You must manually examine your scripts at the specified location
for a clue about the problem.

5.10.2 OS.Alert()

Because there is no JScript debugger on the Windows CE device, the tried-and-
true debugging tool is “OS.Alert(message)”. Experienced programmers will
recognize this as the “write(6,100)”, “printf” or “MessageBox” technique.

The basic idea is to sprinkle “OS.Alert()” calls through your code to track program
flow and variable values. It can be tedious, but it's easy to do and easy to
remove the OS.Alert() calls by preceding them with comment characters.

Alternatively, you can define a Debug() method and sprinkle it through your code.
This makes it easier to enable or disable debugging.

var globalDebuglLevel = 0;

function Debug(message)
{
if (globalDebugLevel > 0)
{
OS.Alert (message);
}

CETerm Scripting Guide Page 121

Appendix 1 - IDA Action Codes

Many IDA codes apply only to a Terminal Emulation session. Some IDA codes

can only be used in restricted circumstances, such as IDA_URL.

Symbolic Name Friendly Name Description
IDA_BEL Bell

IDA BS Backspace

IDA HT Horizontal Tab

IDA_TAB Tab

IDA LF Linefeed

IDA VT Vertical Tab

IDA FF Form Feed

IDA CR Carriage Return

Printable ASCII

IDA_SPACE

<Space>

IDA_EXCLAMATION_MARK

IDA_DOUBLE_QUOTE

IDA_NUMBER_SIGN

#

IDA_DOLLAR_SIGN

$

IDA_PERCENT

%

IDA_AMPERSAND

IDA_SINGLE_QUOTE

IDA_LEFT PAREN

IDA_RIGHT_PAREN

IDA_ASTERISK

IDA_PLUS

IDA_COMMA

IDA_HYPHEN

IDA_PERIOD

IDA_SLASH

IDA 0O

IDA_1

IDA 9

IDA_COLON

IDA_SEMICOLON

IDA_LESS_THAN

IDA_ EQUAL

IDA_GREATER_THAN

IDA_QUESTION_MARK

NIV AT

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name Friendly Name Description

IDA_ AT @

IDA_A A

IDA B B

IDA Z Z

IDA_LEFT_BRACKET [

IDA_ BACKSLASH \

IDA_RIGHT _BRACKET]

IDA CARET N

IDA_UNDERSCORE _

IDA_ BACKTICK)

IDA a a

IDA b b

IDA z z

IDA_LEFT_BRACE {

IDA_PIPE |

IDA RIGHT BRACE }

IDA_TILDE ~

IDA DEL DEL

C1 ASCII Controls

IDA IND Index

IDA NEL Next Line

IDA_HTS Horiz Tab Set

IDA_RI Reverse Index

IDA_SS2 Single Shift 2

IDA_SS3 Single Shift 3

IDA DCS Device Ctrl Str

IDA PU1 Private Use One

IDA PU2 Private Use Two

IDA_ CSI Ctrl Seq Intro

IDA ST String Term

IDA_OSC OS Command

IDA PM Private Msg

IDA_APC App Prog Cmd

Internal Actions (TE only)

IDA_ UPDATE CURSOR Update Cursor
CETerm Scripting Guide Page 123

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name

Friendly Name

Description

IDA_INHIBIT_UPDATE

Inhibit Update

Don’t update display

IDA_UNINHIBIT_UPDATE

Uninhibit Update

Allow display update

IDA_UPDATE

Update

Force display update

IDA_INHIBIT_SEND

Inhibit Send

VT buffer characters

IDA_UNINHIBIT_SEND

Uninhibit Send

VT stop buffering

IDA_SEND PENDING

Send Pending Chars

VT send buffered chars

Program Actions

IDA_PROGRAM_ABOUT

Program About

Display About dialog

IDA_PROGRAM EXIT

Program Exit

Exit program

IDA_PROGRAM_EXITSILENT

Program EXxit Silent

Exit program silently

IDA_PROGRAM HELP

Program Help

Display Help

IDA_SUSPEND_DEVICE

Suspend Device

Enter suspend state

IDA_BLUETOOTH_DISCOVERY

Bluetooth Discovery

Start discovery

IDA_WARMBOOT

Warm Boot

Warm boot device

IDA_COLDBOOT

Cold Boot

Cold boot device

IDA_MENU_TOPBOTTOM

Menu Top/Bot

Toggle menu location

IDA_MENU_TOGGLEHIDE

Menu Toggle

Toggle menu visibility

IDA_ TOOLBAR TOGGLE

ToolBar Toggle

Toggle toolbar visibility

IDA_START_TOGGLEHIDE

Start Menu Toggle

Toggle Start visibility

IDA_MENUBAR_TOGGLEHIDE

MenuBar Toggle

Toggle menubar

visibility
IDA_SESSION_TOGGLECON Connect/Disconnect | Toggle session

connection
IDA_SESSION CONFIGURE Configure Configure session
IDA_ SESSION CONNECT Connect Connect session
IDA SESSION DISCONNECT Disconnect Disconnect session

IDA_SESSION_NEXT_LIVE

Next Live Session

Switch to next live
session

IDA_SESSION_PASSWORD

Password

Session password
dialog

IDA_SESSION_PREV

Prev Session

Switch to previous
session

IDA_SESSION NEXT

Next Session

Switch to next session

IDA_SESSION_DISCON_ALL

Disconnect All

Disconnect all sessions

IDA_SESSION S1 Session 1 Switch to session 1
IDA_SESSION S2 Session 2 Switch to session 2
IDA_SESSION_S3 Session 3 Switch to session 3

CETerm Scripting Guide

Page 124

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name

Friendly Name

Description

IDA_SESSION_S4 Session 4 Switch to session 4
IDA_ TOOLBAND HIDE Hide ToolBar Hide full Toolbar

IDA' TOOLBAND TOGGLEHIDE Toggle ToolBar Toggle Toolbar visibility
IDA_ KEYBAR_ HIDE Hide KeyBar Hide KeyBar

IDA_ KEYBAR _TOGGLEHIDE KeyBar Toggle Toggle KeyBar visibility

IDA_KEYBAR_LEFT

Prev KeyBar

Switch to previous
KeyBar

IDA_KEYBAR_RIGHT

Next KeyBar

Switch to next KeyBar

IDA_ KEYBAR SEPARATOR --Separator-- Separator for KeyBar
IDA_KEYBAR_NONE (Empty) No action placeholder
IDA_ HSCROLL_HIDE HScroll Hide

IDA_HSCROLL_VISIBLE HScroll Show

IDA_HSCROLL_TOGGLEHIDE

HScroll Toggle

IDA_HSCROLL_PLUSON

HScroll Right One

IDA_HSCROLL_MINUSONE

HScroll Left One

IDA_HSCROLL_PLUSHALF

HScroll Right Page

IDA_HSCROLL_MINUSHALF

HScroll Left Page

IDA_HSCROLL_PLUSEND

HScroll Right End

IDA_HSCROLL_MINUSEND

HScroll Left End

IDA_VSCROLL_HIDE

VScroll Hide

IDA_VSCROLL_VISIBLE

VScroll Show

IDA_VSCROLL_TOGGLEHIDE

VScroll Toggle

IDA_VSCROLL_PLUSONE

VScroll Up One

IDA_VSCROLL_MINUSONE

VScroll Down One

IDA_VSCROLL_PLUSHALF

VScroll Up Page

IDA_VSCROLL_MINUSHALF

VScroll Down Page

IDA_VSCROLL_PLUSEND

VScroll Up End

IDA_VSCROLL_MINUSEND

VScroll Down End

IDA_ FONT PLUS Font Inc Increase font size
IDA_FONT_ MINUS Font Dec Decrease font size
IDA_ TOGGLE_FONT BOLD Font Bold

IDA_SMARTPAD_OPEN

SmartPad Show

IDA_SMARTPAD_CLOSE

SmartPad Hide

IDA_SMARTPAD_TOGGLEHIDE

SmartPad Toggle

IDA_SLEEP_10

Sleep 10msec

IDA_ SLEEP 50

Sleep 50msec

CETerm Scripting Guide

Page 125

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name Friendly Name Description

IDA_SLEEP_200 Sleep 200msec

IDA_ SLEEP 1000 Sleep 1sec
IDA_SLEEP_5000 Sleep 5sec
IDA_SLEEP_20000 Sleep 20sec

IDA_SLEEP_100000

Sleep 100sec

IDA_SCAN_RESUME

Scan Resume

Allow scanning

IDA_SCAN_SUSPEND

Scan Suspend

Suspend scanning

IDA_SCAN_TRIGGER

Scan Trigger

Soft trigger scanner

IDA_ MACRO_OPEN

Macro Show

Show Macro Tool

IDA_ MACRO CLOSE

Macro Hide

Hide Macro Tool

IDA_MACRO_TOGGLEHIDE

Macro Toggle

Toggle Macro Tool
hiding

IDA_MACRO RECORD

Macro Record

Start Macro record

IDA_ MACRO_STOP

Macro Stop

Stop Macro record

IDA_MACRO PLAY

Macro Play

Replay Macro

IDA_PRINT _SCREEN

Print Screen

Print current screen

IDA_ OIA HIDE OIA Hide Hide IBM OIA bar

IDA OIA VISIBLE OIA Show Show IBM OIA bar

IDA_OIA TOGGLEHIDE OIA Toggle Toggle OIA bar
visibility

General IBM and VT Actions

IDA_PF1 F1 (Not VT PF1)

IDA_PF2 F2 (Not VT PF2)

IDA_PF3 F3 (Not VT PF3)

IDA_PF4 F4 (Not VT PF4)

IDA PF24 E24

IDA HOME Home

IDA DOWN Down

IDA_UP Up

IDA LEFT Left

IDA_RIGHT Right

IDA_ ENTER Enter

IBM Actions

CETerm Scripting Guide

Page 126

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name Friendly Name Description

IDA IBM_HOME IBM Home

IDA_DELETE Delete

IDA_INSERT_ON Insert On

IDA_INSERT_OFF Insert Off

IDA_INSERT _TOGGLE Insert Toggle

IDA_ATTN Attn

IDA_CLEAR Clear

IDA_ CURSOR_SELECT Cursor Select

IDA_DUP DUP

IDA_ ERASE EOF Erase EOF

IDA_ERASE_INPUT Erase Input

IDA FIELD MARK Field Mark

IDA_ NEWLINE Newline

IDA_PA1 PAl

IDA PA2 PA2

IDA_PA3 PA3

IDA RESET Reset

IDA_ SYSREQ Sys Request

5250 Specific Actions

IDA FIELD EXIT Field Exit

IDA FIELD PLUS Field +

IDA_FIELD_MINUS Field -

IDA FIELD ADVANCE Field Advance

IDA FIELD BACKSPACE Field Backspace

IDA FIELD SUB Field SUB

IDA_HELP IBM Help

IDA_ROLL DOWN Roll Down

IDA_ ROLL UP Roll Up

IDA_ ROLL LEFT Roll Left

IDA_ ROLL RIGHT Roll Right

IDA_ BACKSPACE Backspace

IDA PRINT IBM Print

VT Actions

IDA_ ANSWERBACK Answerback

IDA_FIND Find

IDA INSERT HERE Insert Here

IDA_ NEXT Next

IDA_PREVIOUS Previous
CETerm Scripting Guide Page 127

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name

Friendly Name

Description

IDA REMOVE Remove

IDA_SELECT Select

IDA_VT PF1 VT PF1 Numpad PF1 key
IDA_VT_PF2 VT PF2 Numpad PF2 key
IDA_VT PF3 VT PF3 Numpad PF3 key
IDA_ VT PF4 VT PF4 Numpad PF4 key
IDA_ VT _COMMA Numpad Comma

IDA_NUMPAD 0 Numpad 0

IDA_NUMPAD 1 Numpad 1

IDA_NUMPAD 2 Numpad 2

IDA_ NUMPAD 3 Numpad 3

IDA_NUMPAD 4 Numpad 4

IDA_NUMPAD 5 Numpad 5

IDA_NUMPAD_6 Numpad 6

IDA_NUMPAD 7 Numpad 7

IDA_ NUMPAD_8 Numpad 8

IDA_NUMPAD 9 Numpad 9

IDA VT ENTER Numpad Enter

IDA VT MINUS Numpad Minus

IDA_VT PERIOD

Numpad Period

IDA_UDK_F6 UDK F6 VT User Defined Key
F6

IDA_UDK_F7 UDK F7 VT User Defined Key
F7

IDA_UDK_F20 UDK F20 VT User Defined Key
F20

IDA_ VT _HELP VT Help

IDA_ VT DO VT Do

IDA_ADD Add

IDA_ MULTIPLY Multiply

IDA_DIVIDE Divide

Custom VT Sequences

IDA VT SAP0135 VT SAP0135 0x00 0x35

IDA VT CSI M VT CSIM ESC[M

IDA_ VT _CSI_N VT CSI N ESC[N

IDA_VT_CSI_O VT CSI O

IDA_ VT _CSI P VT CSIP

CETerm Scripting Guide

Page 128

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name Friendly Name Description
IDA_ VT CSI Q VT CSIQ

IDA_VT CSI R VT CSIR

IDA_VT CSI_S VT CSIS

IDA VT CSI T VTCSIT

Windows App Keys

IDA_APPKEY K1 App Key 1

IDA_ APPKEY K2 App Key 2

IDA_APPKEY K16 App Key 16

IDA_SCROLL_UPPERLEFT

Scroll Upper Left

IDA_SCROLL_UPPERRGHT

Scroll Upper Right

IDA_SCROLL_LOWERLEFT

Scroll Lower Left

IDA_SCROLL_LOWERRGHT

Scroll Lower Right

IDA_SCROLL_CENTER

Scroll Center

IDA_SCROLL_CURSOR_CENTER

Scroll Cursor Center

IDA_SCROLL_CURSOR_VISIBLE

Scroll Cursor Visible

IDA_COPYALL Copy All Copy screen to
clipboard

IDA PASTE Paste Past clipboard

IDA USTRING 1 Text 1 Send user text 1

IDA_ USTRING 2 Text 2 Send user text 2

IDA_ USTRING 64 Text 64 Send user text 64

IDA_SCRIPT_1 Script 1 Run Script 1

IDA_SCRIPT 2 Script 2 Run Script 2

IDA_SCRIPT 64 Script 64 Run Script 64

IDA_SIP_HIDE SIP Hide

IDA_SIP_SHOW SIP Show

IDA_SIP TOGGLEHIDE SIP Toggle

IDA_SIP_LOCKDOWN SIP Lockdown

IDA_SIP_UNLOCK SIP Unlock

IDA_SIP_UP SIP Up

IDA_SIP_ DOWN SIP Down

IDA_SIP_FORCEDOWN

SIP Forcedown

CETerm Scripting Guide

Page 129

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name Friendly Name Description
IDA_IM_KEYBOARD IM Keyboard

IDA_IM_LOCKED IM Locked

HTML Actions

IDA_ URL HOME URL Home

IDA_ URL BACK URL Back

IDA URL URL Defines start of URL

Special Actions

IDA_VIBRATE_100

Vibrate 100ms

IDA_VIBRATE_200

Vibrate 200ms

IDA_VIBRATE_500

Vibrate 500ms

IDA_VIBRATE_1000

Vibrate 1sec

IDA_VIBRATE_2000

Vibrate 2sec

IDA_VIBRATE_5000

Vibrate 5sec

IDA_BEEP_OK Beep

IDA_ BEEP_WARN Beep Warn
IDA_BEEP_LOUD Beep Loud

IDA_ KBD ALPHA KeyMode Alpha
IDA_ KBD NUMERIC KeyMode Numeric
IDA_ KBD ALPHANUM KeyMode AlphaNum

IDA_KBD_UPPERALPHA

KeyMode Upper
Alpha

IDA_KBD_LOWERALPHA

Keymode Lower
Alpha

IDA_KBD_FUNCMODE

KeyMode Func

IDA_KBD CYCLEMODE

KeyMode Cycle

Cycle to next mode

IDA_POPUP_IPADDRESS

Show IP Address

IDA_POPUP_MACADDRESS

Show MAC Address

IDA_POPUP_BATTERY

Show Battery

IDA_POPUP_TIME Show Time
IDA_POPUP_SERIALNUMBER Show Serial #
IDA_POPUP DEVICEID Show Device ID
IDA_POPUP_RFINFO Show RF info

CETerm Scripting Guide

Page 130

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Appendix 2 - Properties

The properties listed in this appendix may be accessed via the GetProperty and
SetProperty methods on the CETerm object. Properties marked (RO) are read-
only and may not be set with SetProperty. The symbol T/F indicates a true or
false value.

APPLICATION PROPERTIES

Property Name Description

app.buildid (RO) Program build identifier
app.commandline (RO) Commandline starting program
app.name (RO) Program name

app.script.NN Script # NN contents, NN is 1-64
app.session.active (RO) Currently active session
app.usertext.NN User text # NN contents, NN is 1-64
app.version (RO) Program version

DEVICE PROPERTIES

Property Name Description
device.batterystatus (RO) Current battery status string
device.battery.statustext (RO)

device.battery.status (RO) Current battery status

-1 — unknown, 0 — critical, 1 — warning,
2 —low, 3 — medium, 4 — high, 5 - charging

device.battery.level (RO) Current battery strength - 0 — 100
-1 — unknown
device.bluetoothaddress (RO) | Bluetooth address
device.deviceid (RO) Device ID string
device.ipaddress (RO) IP Address of handheld
device.macaddress (RO) MAC Address of handheld
device.oeminfo (RO) OEM information text
device.platformid (RO) Windows CE Platform ID

CETerm Scripting Guide Page 131

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Property Name Description
device.presetid (RO) Windows CE Preset ID
device.rf.strength (RO) RF signal strength 0-100,
-2 — not associated with AP,
-1 — unknown
device.rf.status (RO) RF status

-1 — unknown, 0 — unassociated, 1 — poor,
2 —fair, 3 — good, 4 — very good, 5 — excellent
device.serialnumber (RO) Device serialnumber

SESSION PROPERTIES

Session properties begin with “sessionX” where X is 1 through 4. For example
“session4.connection.host”. If no X’ value is found, the currently active session

number is used.

Property Name Description
sessionX.connection.host Session host (or home URL)
sessionX.connection.port TE session port
sessionX.connection.type Session type

3270, 5250, VT220, HTML
sessionX.printer.network.queue | Network printing queue
sessionX.printer.serial.port Serial printing port

CETerm Scripting Guide Page 132

SCANNER PROPERTIES

Scanner properties are unique for each session. Scanner properties begin with
“sessionX.scanner” where X is 1 through 4. For example
“session4.scanner.enabled”. If no ‘X’ value is found, the currently active session
number is used. We use the name “scanner” for all types of barcode readers,
including laser scanners and imagers. If a hardware vendor is listed, the
property is specific to barcode readers made by that vendor.

NOTE: If you are changing the scanner properties for the currently activesession,
you must call CETerm.PostIDA(“IDA_SCAN_APPLYCONFIG”, 0); for
the changes to take effect.

WARNING: Not all properties are applicable to all hardware devices. Different
devices may use different names to refer to the same parameters.
You should look at the settings available in the CETerm configuration
dialogs to determine if the property is appropriate and what values it

may accept.
Property Name Description
sessionX.scanner.enabled Scanner is enabled. T/F

sessionX.scanner.aimerenabled | Aimer is enabled. T/F

sessionX.scanner.wedgeenabled | Allow wedge if scanner disabled in CETerm
(Intermec). T/F

sessionX.scanner.focusnear Imager focus near if true. T/F

sessionX.scanner.enhancedld Improved decode for poor quality barcodes

sessionX.scanner.negativelabel | Improved decode negative barcodes T/F

sessionX.scanner.picklistmode Decode barcode under cross-hairs. T/F

sessionX.scanner.preamble Barcode preamble
sessionX.scanner.postamble Barcode postamble
sessionX.scanner.grid Barcode grid filter (Intermec) Use

OnBarcodeRead for more features.

sessionX.scanner.beamtimeout | Scan beam timeout, milliseconds

sessionX.scanner.aimertimeout | Aimer timeout, milliseconds

sessionX.scanner.aimmode Aim mode. none, dot, slab, reticle

sessionX.scanner.redundancy Linear security/redundancy, 0-5

COMMON SYMBOLOGY PROPERTIES

Symbology properties are unique for each session. Symbology properties begin
with “sessionX.scanner.SSS” where X is 1 through 4 and SSS represents a
symbology name and may be 3 or more characters long. For example
“session4.scanner.upca.enabled”. If no ‘X’ value is found, the currently active
session number is used. See the Symbology Names table below for SSS values.

NOTE: If you are changing the scanner properties for the currently activesession,
you must call CETerm.PostIDA(“IDA_SCAN_APPLYCONFIG”, 0); for
the changes to take effect.

WARNING: Not all properties are applicable to all hardware devices or all
symbologies. Different devices may use different names to refer to the
same parameters. You should look at the settings available in the
CETerm configuration dialogs to determine if the property is
appropriate and what values it may accept. This is also true for the
symbologies that a device supports. You may be able to successfully
change a parameter that is not supported on a device.

Last Property Level | Description

enabled Symbology is enabled. T/F

verifycheck Require check digit validation. T/F

redundancy Scan redundancy flag. T/F (Symbol)

reportcheck Report the check digit with the data. T/F

reportnumbersystem Report UPC number system. T/F

reportcountry Report UPC country code. T/F

reportstartstop Report start/stop digits with barcode data. T/F

converttoupca Convert barcode output to UPCA. T/F

converttoeanl3 Convert barcode output to EAN-13. T/F

supplemental2 Enable 2 digit supplemental or add-on barcode. T/F

supplemental5 Enable 5 digit supplemental or add-on barcode. T/F

supplementalrequired Require supplemental on UPC. T/F

supplementalseparator | Insert supplemental separator. T/F

addendum Supplemental mode. none, optional, required

minlength Minimum barcode length. Not supported by all
symbologies. See configuration dialogs for ranges.

maxlength Maximum barcode length. Not supported by all
symbologies. See configuration dialogs for ranges.

stripleading Strip characters from start of barcode. 0-32

striptrailing Strip characters from end of barcode. 0-32

customid Custom symbology ID. 4 character string

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

CODABAR SYMBOLOGY PROPERTIES

Codabar specific symbology properties are unique for each session. Symbology
properties begin with “sessionX.scanner.codabar” where X is 1 through. For
example “session4.scanner.codabar.clsiediting”. If no ‘X’ value is found, the
currently active session number is used.

NOTE: If you are changing the symbology properties for the currently active
session, you must call “CETerm.PostIDA(
“‘IDA_SCAN_APPLYCONFIG”, 0) for the changes to take effect.

WARNING: Not all properties are applicable to all hardware devices. Different
devices may use different names to refer to the same parameters.
You should look at the settings available in the CETerm configuration
dialogs to determine if the property is appropriate and what values it
may accept.

Last Property Level Description

clsiediting CLSI editing is enabled. T/F
notisediting NOTIS editing is enabled. T/F
startstop Start/Stop digit modes. Not all modes apply to all

devices. See CETerm configuration for values on a
specific device. discard, none, abcd, dcl-dc4,
lowerabcd, abcd/tn*e, aa, bb, cc, dd, any

CETerm Scripting Guide Page 135

CODE39 SYMBOLOGY PROPERTIES

Code 39 specific symbology properties are unique for each session. Symbology
properties begin with “sessionX.scanner.code39” where X is 1 through. For
example “session4.scanner.coded9.clsiediting”. If no ‘X’ value is found, the
currently active session number is used.

NOTE: If you are changing the symbology properties for the currently active
session, you must call “CETerm.PostIDA(
“‘IDA_SCAN_APPLYCONFIG”, 0) for the changes to take effect.

WARNING: Not all properties are applicable to all hardware devices. Different
devices may use different names to refer to the same parameters.
You should look at the settings available in the CETerm configuration
dialogs to determine if the property is appropriate and what values it
may accept.

Last Property Level Description

asciimode Select ASCII mode. Not all modes apply to all
devices. See CETerm configuration for values on a
specific device. base, full, mixedfull

fullascii Enable Full-ASCII mode. T/F
verifycheck39 Check digit validation mode. 0-255
reportstartstop Report start/stop with barcode. T/F
convertocode32 Convert to Code 32 format. T/F
reportcode32prefix Report Code 32 prefix with barcode. T/F
concatenation Enable concatenation. T/F

stripAIAG Remove AIAG codes. T/F

erroraccept Allow format error. T/F

CODE 128 SYMBOLOGY PROPERTIES

Code 128 specific symbology properties are unique for each session.
Symbology properties begin with “sessionX.scanner.code128” where X is 1
through. For example “session4.scanner.code128.ISBT”. If no ‘X’ value is
found, the currently active session number is used.

NOTE: If you are changing the symbology properties for the currently active
session, you must call “CETerm.PostIDA(
“‘IDA_SCAN_APPLYCONFIG”, 0) for the changes to take effect.

may accept.

WARNING: Not all properties are applicable to all hardware devices. Different
devices may use different names to refer to the same parameters.
You should look at the settings available in the CETerm configuration
dialogs to determine if the property is appropriate and what values it

Last Property Level

Description

FNC1char FNC1 character. 0-255
CIP Enable CIP labels. T/F
ISBT Enable ISBT 128 labels. T/F
other Enable other 128 labels. T/F

UCCEAN

Enable UCCEAN 128 labels. T/F

UPC-EAN GENERAL SYMBOLOGY PROPERTIES

UPC-EAN general symbology properties are unique for each session.
Symbology properties begin with “sessionX.scanner.upc-ean” where X is 1
through. For example “session4.scanner.upc-ean.bookland”. If no X’ value is
found, the currently active session number is used.

NOTE: If you are changing the symbology properties for the currently active
session, you must call “CETerm.PostIDA(
“‘IDA_SCAN_APPLYCONFIG”, 0) for the changes to take effect.

may accept.

WARNING: Not all properties are applicable to all hardware devices. Different
devices may use different names to refer to the same parameters.
You should look at the settings available in the CETerm configuration
dialogs to determine if the property is appropriate and what values it

Last Property Level

Description

bookland Enable Bookland labels. T/F
coupon Enable Coupon labels. T/F
lineardecode Enable linear decode. T/F

supplemental2

Enable 2 digit supplemental or add-on barcode. T/F

supplemental5

Enable 5 digit supplemental or add-on barcode. T/F

supplementalretry

Supplemental decode retry count. 2-10

randomweightcheckdigit

Enable random weight check digit. T/F

supplementalmode

Supplemental mode. none, always, auto

securitylevel

Decode security level. none, all, ambiguous

SYMBOLOGY NAMES

Symbology properties begin with “sessionX.scanner.SSS” where X is 1 through 4
and SSS represents a symbology name and may be 3 or more characters long.
The following table lists all available symbology names.

WARNING: Not all symbologies are applicable to all hardware. Different devices
may use different names to refer to similar symbologies, e.g., upce and
upce0. You should look at the symbologies available in the CETerm
configuration dialogs to determine the correct name.

Symbology Name Description
ames Ames

auspostal Australian Postal
aztec Aztec

bpo British Postal
canpostal Canadian Postal
chinapostal China Postal
codabar Codabar
codablock Codablock
codell Code 11
codel6k Code 16k
code32 Code 32

code39 Code 39

code49 Code 49

code93 Code 93
codel28 Code 128
composite Composite AB and C
couponcode Coupon Code
d2o0f5 Discrete (standard) 2 of 5
datamatrix Datamatrix

delta Delta Code
dutchpostal Dutch Postal
ean8 EAN-8

eanl3 EAN-13

i20f5 Interleaved 2 of 5
iata25 IATA 2 of 5

idtag ID Tag

isbt ISBT
japanpostal Japan Postal
koreapostal Korea Postal
label45 Label 45

m20f5 Matrix 2 of 5

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbology Name Description
maxicode Maxicode
mesa Mesa

micropdf Micro PDF

msi MSI

pdf PDF 417
pdf417 PDF 417
pharma39 Pharma 39
planet Planet

plessey Plessey
posicode Posicode
postnet Postnet
grcode QR Code

Iss RSS 14

rssl4 RSS 14

rssexp RSS Expanded
rsslim RSS Limited
rssltd RSS Limited
telepen Telepen

tlc39 TLC 39
trioptic39 Trioptic 39
ukpostal British (UK) Postal
upca UPC-A

upce UPC-E

upceO UPC-EO

upcel UPC-E1
upc-ean UPC-EAN General Settings
usplanet US Planet
uspostnet US Postnet
usps4cb USPS 4CB

CETerm Scripting Guide

Page 140

Appendix 3 — Symbology LabelTypes

This appendix contains a list of symbology labeltypes that are returned in the
“type” argument of OnBarcodeRead. These are also available to a
ScannerNavigate META tag handler. Please note that not all hardware devices
return these values. You may need to test scan a known barcode to find the
labeltype value for that barcode.

LabelType Hexadecimal Symbology
Character Value
0x23 Plessey
& 0x24 Telepen
% 0x25 Codablock A
$ 0x26 Codablock F
‘ (single quote) 0x27 Matrix 2 of 5
(0x28 Code 49
) 0x29 Code 16K
* Ox2A Ankercode
+ 0x2B Aztec
, (comma) 0x2C Korea Postal
0 0x30 UPC-E or UPC-EO
1 0x31 UPC-E1
2 0x32 UPC-A
3 0x33 MSI
4 0x34 EAN-8
5 0x35 EAN-13
6 0x36 Codabar
7 0x37 Code 39
8 0x38 Discrete 2 of 5
9 0x39 Interleaved 2 of 5
: (colon) Ox3A Code 11
; (semi-colon) 0x3B Code 93
< 0x3C Code 128
> Ox3E IATA 2 of 5
? Ox3F EAN 128

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

LabelType Hexadecimal Symbology
Character Value

@ 0x40 PDF 417

A 0x41 ISBT 128

B 0x42 Trioptic 39

C 0x43 Coupon Code

D 0x44 Bookland

E 0x45 Micro PDF

F 0x46 Code 32

G 0x47 Macro PDF

H 0x48 Maxicode

I 0x49 Datamatrix

J Ox4A QR Code

K 0x4B Macro Micro PDF
L 0x4C RSS-14

M 0x4D RSS Limited

N Ox4E RSS Expanded
Vv 0x56 Composite AB
wW 0x57 Composite C

X 0x58 TLC 39

a Ox61 US Postnet

b 0x62 US Planet

c 0x63 UK (British) Postal
d 0x64 Japan Postal

e 0x65 Australian Postal
f 0x66 Dutch Postal

g 0x67 Canadian Postal
p 0x70 Mesa

g 0x71 OCR

r 0x72 China Postal

S 0x73 Posicode

t 0x74 USPS4CB

u 0x75 ID Tag

CETerm Scripting Guide

Page 142

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Appendix 4 - Constants

This appendix contains various constants that are used by CETerm Automation
Objects. Many of these constants are a direct representation of the equivalent
values from the Windows CE system APIs and constants.

These constants are mostly presented as global JavaScript variables for direct
inclusion in scripts. For simple scripts, a few extra global variables are not
harmful, but good programming practices seek to minimize globals to prevent
accidental name collisions. Some constants below are represented more
appropriately as properties of “constant” objects.

For efficiency, you should not include constant definitions that are not used by
your scripts. One good pattern is to re-express the needed constants as
members of a single CONSTANTS object. Here is a brief example showing how
a single CONTANTS object might contain multiple categories of constants.

// Express constants as object properties.

var CONSTANTS = {
MESSAGEBOX: {FLAG OK:0x00000000, FLAG OKCANCEL:0x00000001},
FILE ATTRIBUTE: {READONLY:0x00000001, HIDDEN:0x00000002},
SERIAL PORT: {NOPARITY:0x00, ODDPARITY:0x0l, EVENPARITY:0x02}

}

// Refer to constants using normal JavaScript syntax
var myparity = CONSTANTS.SERIAL PORT.ODDPARITY;

BATTERY AND POWER MANAGEMENT CONSTANTS

// Power Management and Battery Constants

//

var AC_LINE OFFLINE = 0x00;
var AC LINE ONLINE = 0x01;
var AC_LINE BACKUP POWER = 0x02;
var AC_LINE UNKNOWN = 0OxFF;
var BATTERY_FLAG_HIGH = 0x01;
var BATTERY FLAG LOW = 0x02;
var BATTERY FLAG CRITICAL = 0x04;
var BATTERY_FLAG_CHARGING = 0x08;
var BATTERY FLAG NO BATTERY = 0x80;
var BATTERY_FLAG_UNKNOWN = 0OxFF;
var BATTERY PERCENTAGE UNKNOWN = OxXFF;
var BATTERY_LIFE_UNKNOWN = OxFFFFFFFF;
var BATTERY CHEMISTRY ALKALINE = 0x01;

CETerm Scripting Guide

Page 143

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

var BATTERY CHEMISTRY NICD = 0x02;
var BATTERY CHEMISTRY NIMH = 0x03;
var BATTERY CHEMISTRY LION = 0x04;
var BATTERY CHEMISTRY LIPOLY = 0x05;

var BATTERY CHEMISTRY ZINCAIR = 0x06;
var BATTERY CHEMISTRY UNKNOWN OxFF;

// Power State

var POWER_STATE UNKNOWN = -1; // Unknown

var POWER STATE FULL ON // Full power

var POWER STATE LOW POWER ON // Functional at low power
var POWER STATE STANDBY = // Partial power, auto-wake
var POWER STATE SLEEP = // Partial power, manual-wake
var POWER STATE OFF = // Unpowered

I
~

Il
B wWw N o
~

~e

o N

~e

BROWSER ERROR CONSTANTS

// Navigate Error HRESULT status codes
// See Microsoft SDK for documentation.

//

// URL string is not valid.

var INET E INVALID URL = 0x800C0002;
// No session found.

var INET E NO SESSION = 0x800C0003;
// Unable to connect to server.

var INET_E_CANNOT_CONNECT = 0x800C0004;
// Requested resource is not found.

var INET E RESOURCE NOT FOUND = 0x800C0005;
// Requested object is not found.

var INET E OBJECT NOT FOUND = 0x800C0006;
// Requested data is not available.

var INET E DATA NOT AVAILABLE = 0x800C0007;
// Failure occurred during download.

var INET E_DOWNLOAD FAILURE = 0x800C0008;
// Authentication required.

var INET_E_AUTHENTICATION_REQUIRED = 0x800C0009;
// Required media not available or valid.

var INET E NO VALID MEDIA = 0x800C000A;
// Connection timed out.

var INET E_CONNECTION TIMEOUT = 0x800C000B;
// Request is invalid.

var INET E INVALID REQUEST = 0x800C000C;
// Protocol is not recognized.

var INET E UNKNOWN PROTOCOL = 0x800C000D;
// Failed due to security issue.

var INET E SECURITY PROBLEM = 0x800C000E;
// Unable to load data from the server.

var INET E_CANNOT LOAD DATA = 0x800CO00F;

// Unable to create an instance of the object.
var INET E CANNOT INSTANTIATE OBJECT = 0x800C0010;

CETerm Scripting Guide Page 144

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

// Attempt to redirect the navigation failed.

var INET E REDIRECT FATILED = 0x800C0014;
// Navigation redirected to a directory.

var INET E REDIRECT TO DIR = 0x800C0015;
// Unable to lock request with the server.

var INET E CANNOT LOCK REQUEST = 0x800C0016;
// Reissue request with extended binding.

var INET E USE EXTEND BINDING = 0x800C0017;
// Binding is terminated.

var INET E TERMINATED BIND = 0x800C0018;
// Permission to download is declined.

var INET E CODE_DOWNLOAD DECLINED = 0x800C0100;
// Result is dispatched.

var INET E RESULT DISPATCHED = 0x800C0200;
// Cannot replace a protected SFP file.

var INET E CANNOT REPLACE SFP_FILE = 0x800C0300;

FILE ATTRIBUTE CONSTANTS

// File attribute flags
// See Microsoft SDK for documentation.

var FILE ATTRIBUTE READONLY = 0x00000001;
var FILE ATTRIBUTE HIDDEN = 0x00000002;
var FILE ATTRIBUTE SYSTEM = 0x00000004;
var FILE ATTRIBUTE DIRECTORY = 0x00000010;
var FILE ATTRIBUTE ARCHIVE = 0x00000020;
var FILE ATTRIBUTE INROM = 0x00000040;
var FILE ATTRIBUTE ENCRYPTED = 0x00000040;
var FILE ATTRIBUTE NORMAL = 0x00000080;
var FILE ATTRIBUTE TEMPORARY = 0x00000100;
var FILE ATTRIBUTE COMPRESSED = 0x00000800;
var FILE ATTRIBUTE ROMSTATICREF = 0x00001000;
var FILE ATTRIBUTE ROMMODULE = 0x00002000;

IBM STATUS CONSTANTS

// Constants used by DisplayStatus
var IBM_STATUS_UNKNOWN = 0;
var IBM STATUS SENDING =
var IBM STATUS WAITING =
var IBM STATUS SYSTEM =
var IBM_STATUS_PROTECTED =
var IBM_STATUS_NUMERIC =
var IBM STATUS FULL =
var IBM STATUS INSERT =
var IBM STATUS SYSCLEAR =
var IBM STATUS WAITCLEAR

Ne Ne No

o e

Ne Ne N

O 0 ~Jo U WN K
~

~.

CETerm Scripting Guide Page 145

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

KEYBOARD CONSTANTS

// Constants used by OnKeyboardStateChange
var IBM KEYBOARD HARDWARE ERROR = 0;

var IBM KEYBOARD NORMAL LOCKED
var IBM KEYBOARD NORMAL UNLOCKED =

var IBM KEYBOARD POWER ON

var IBM KEYBOARD PRE HELP ERROR
var IBM KEYBOARD POST HELP ERROR =
var IBM KEYBOARD SS MESSAGE

var IBM KEYBOARD SYSTEM REQUEST

var VT KEYBOARD LOCKED

var VT KEYBOARD UNLOCKED

’

’

I

~e Ne

Il
o WwN e
Ne

~e

= 1;

2;

// Keyboard Hotkey Constants

var HOTKEY MODIFIERS =
{

MOD ALT : 0x1,
MOD CONTROL : 0x2,
MOD SHIFT : 0x4,
MOD WIN : 0x8,
MOD KEYUP : 0x1000

}s

// Key state flags
var KEY STATE FLAGS =

{
KeyStateToggledFlag

KeyStateGetAsyncDownFlag

KeyStatePrevDownFlag
KeyStateDownFlag

KeyShiftAnyCtrlFlag
KeyShiftAnyShiftFlag
KeyShiftAnyAltFlag
KeyShiftCapitalFlag
KeyShiftLeftCtrlFlag
KeyShiftLeftShiftFlag
KeyShiftLeftAltFlag
KeyShiftLeftWinFlag
KeyShiftRightCtrlFlag
KeyShiftRightShiftFlag
KeyShiftRightAltFlag
KeyShiftRightWinFlag
KeyShiftDeadFlag

Either ALT key must be held down.
Either CTRL key must be held down.
Either SHIFT key must be held down.
Either WINDOWS key was held down.

Both key up events and key down events
generate a WM HOTKEY message.

0x0001,
0x0002,

0x0040,
0x0080,

0x40000000,
0x20000000,
0x10000000,
0x08000000,
0x04000000,
0x02000000,
0x01000000,
0x00800000,
0x00400000,
0x00200000,
0x00100000,
0x00080000,
0x00020000,

Key is toggled.

Key went down since last
GetAsyncKey call.

Key was previously down.
Key is currently down.

L or R control is down.
L or R shift is down.
L or R alt is down.

VK _CAPITAL is toggled.
L control is down.

L shift is down.

L alt is down.

L Win key is down.

R control is down.

R shift is down.

R alt is down.

R Win key is down.
Char is dead char.

CETerm Scripting Guide

Page 146

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

KeyShiftNoCharacterFlag

0x00010000, // No corresponding char.

KeyShiftNumLockFlag 0x00001000, // NumLock toggled state.
KeyShiftScrollLockFlag 0x00000800 // ScrollLock toggled state.
}i
MESSAGEBOX CONSTANTS
// MessageBox flags
// See Microsoft SDK for documentation.
var MESSAGEBOX FLAG OK = 0x00000000;
var MESSAGEBOX FLAG OKCANCEL = 0x00000001;
var MESSAGEBOX FLAG ABORTRETRYIGNORE = 0x00000002;
var MESSAGEBOX FLAG YESNOCANCEL = 0x00000003;
var MESSAGEBOX FLAG YESNO = 0x00000004;
var MESSAGEBOX FLAG RETRYCANCEL = 0x00000005;
var MESSAGEBOX FLAG ICONERROR = 0x00000010;
var MESSAGEBOX FLAG ICONQUESTION = 0x00000020;
var MESSAGEBOX FLAG ICONWARNING = 0x00000030;
var MESSAGEBOX FLAG ICONINFORMATION = 0x00000040;
var MESSAGEBOX FLAG DEFBUTTON1 = 0x00000000;
var MESSAGEBOX FLAG DEFBUTTONZ = 0x00000100;
var MESSAGEBOX_FLAG_DEFBUTTON3 = 0x00000200;
var MESSAGEBOX_FLAG_DEFBUTTON4 = 0x00000300;
var MESSAGEBOX FLAG APPLMODAL = 0x00000000;
var MESSAGEBOX FLAG SETFOREGROUND = 0x00010000;
var MESSAGEBOX FLAG TOPMOST = 0x00040000;
// MessageBox returned values
var MESSAGEBOX IDOK = 1;
var MESSAGEBOX_IDCANCEL = 2;
var MESSAGEBOX_IDABORT = 3;
var MESSAGEBOX_IDRETRY = 4;
var MESSAGEBOX IDIGNORE = 5;
var MESSAGEBOX IDYES = 6;
var MESSAGEBOX_IDNO = 7;
PLAYSOUND CONSTANTS
// PlaySound flags
// See Microsoft SDK for documentation.
var PLAYSOUND FLAG ASYNC = 0x00000001; // Play asynchronously
CETerm Scripting Guide Page 147

NAURTECH WEB BROWSER AND TERMINAL EM

ULATION FOR WIiNDOWS CE AND WINDOWS MOBILE

var
var
var
var

PLAYSOUND FLAG LOOP =
PLAYSOUND FLAG NOSTOP
PLAYSOUND FLAG NOWAIT

REGISTRY CONSTANTS

// Registry constants
// See Microsoft SDK for
// Root key names

var HKEY CLASSES ROOT
var HKEY CURRENT USER =
var HKEY LOCAL MACHINE

PLAYSOUND FLAG NODEFAULT =

0x00000002;
0x00000008; // Repeat play,
0x00000010;
0x00002000;

documentation.

"HKEY CLASSES ROOT";
"HKEY CURRENT USER";
"HKEY LOCAL MACHINE";

// No default sound

needs ASYNC.
// Don’t stop current sound
// Don’t play if driver busy

var HKEY USERS = "HKEY USERS";
// Data types

var REG_SZ = "REG_SZ";

var REG DWORD = "REG_DWORD";
var REG _BINARY = "REG_BINARY";

var
var

REG_MULTI SZ =
REG_EXPAND SZ =

// Returned Status

var
var
var
var
var
var
var
var

REGISTRY SUCCESS =
REGISTRY FATL =
REGISTRY BAD HIVE =
REGISTRY BAD KEYNAME =
REGISTRY BAD DATATYPE =
REGISTRY BAD VALUE
REGISTRY BAD VALUEFORMAT
REGISTRY OUTOFMEMORY

SERVICE STATE CONSTANTS

"REG MULTI SZ";
"REG_EXPAND SZ";

// Service state for GPS and other devices
// See msdn.microsoft.com IOCTL SERVICE STATUS for

var
var
var
var
var
var
var

SERVICE STATE OFF

SERVICE STATE ON
SERVICE STATE STARTING UP
SERVICE STATE SHUTTING DOWN
SERVICE STATE UNLOADING
SERVICE STATE UNINITIALIZED
SERVICE STATE UNKNOWN

0;

’

1
2
3;
4;
5;
0

xffffffff;

//
//
//
//
//
//

Service
Service
Service
Service
Service
Service

is
is
is
is
is
is

documentation.
turned off.

turned on.
starting up.
shutting down.
unloading.

not uninitialized.

CETerm Scripting Guide

Page 148

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

SERIAL PORT CONSTANTS

// Constants for SerialPort control object

//

// DTR Control Flow Values.

//

var DTR CONTROL DISABLE
var DTR CONTROL_ ENABLE
var DTR CONTROL_ HANDSHAKE

//

// RTS Control Flow Values
//

var RTS_CONTROL DISABLE
var RTS_CONTROL_ENABLE

var RTS_CONTROL_HANDSHAKE
var RTS_CONTROL_TOGGLE

//

// Parity Modes

//

var NOPARITY =
var ODDPARITY
var EVENPARITY =
var MARKPARITY
var SPACEPARITY =

//

// Stop Bit Counts

//

var ONESTOPBIT =
var ONESSTOPBITS =
var TWOSTOPBITS =

//

// Baud rates

//

var CBR 110 =
var CBR 300 =
var CBR 600 =
var CBR 1200 =
var CBR 2400 =
var CBR 4800 =
var CBR 9600 =
var CBR 14400 =
var CBR 19200 =
var CBR 38400 =
var CBR 56000 =
var CBR 57600 =
var CBR 115200 =

= 0x00;
0x01;
= 0x02;

= 0x00;
= 0x01;
= 0x02;
= 0x03;

0x00;
0x01;
0x02;
0x03;
0x04;

0x00;
0x01;
0x02;

110;
300;
600;
1200;
2400;
4800;
9600;
14400;
19200;
38400;
56000;
57600;
115200;

CETerm Scripting Guide

Page 149

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

var CBR 128000
var CBR 256000

//
// Error Flags
//

var
var
var
var
var
var
var
var
var
var
var

CE_RXOVER
CE_OVERRUN
CE_RXPARITY
CE_FRAME
CE_BREAK
CE_TXFULL
CE_PTO
CE_IOE
CE_DNS
CE_OOP
CE_MODE

//

// Access

//

var GENERIC_READ
var GENERIC_WRITE

//
// Events
//

var
var
var
var
var
var
var
var
var
var
var
var
var
var

EV_RXCHAR
EV_RXFLAG
EV_TXEMPTY
EV_CTS
EV_DSR
EV_RLSD
EV_BREAK
EV_ERR
EV_RING
EV_PERR
EV_RX80FULL
EV_EVENT1
EV_EVENT2
EV_POWER

var
var

EVENT WAIT FAILED
EVENT WAIT CANCELED

//

128000;
256000;
0x0001; //
0x0002; //
0x0004; //
0x0008; //
0x0010; //
0x0100; //
0x0200; //
0x0400; //
0x0800; //
0x1000; //
0x8000; //
0x80000000;
0x40000000;
0x0001; //
0x0002; //
0x0004; //
0x0008; //
0x0010; //
0x0020; //
0x0040; //
0x0080; //
0x0100; //
0x0200; //
0x0400; //
0x0800; //
0x1000; //
0x2000; //
0x01000000;
0x02000000;

// Extended Functions codes

//

var
var
var
var
var

SETXOFF
SETXON
SETRTS
CLRRTS
SETDTR

1; //
2; //
3; //
4; //
5-

~
~
~

Queue overflow
Overrun Error
Receive Parity Error
Receive Framing error
Break Detected

TX Queue is full

LPTx Timeout

LPTx I/0 Error

LPTx Device not selected
LPTx Out-Of-Paper
Requested mode unsupported

Receive
Receive

Any Character received
Received certain character
Transmitt Queue Empty

CTS changed state

DSR changed state

RLSD changed state

BREAK received

Line status error occurred
Ring signal detected
Printer error occured
Receive buffer is 80% full
Provider specific event 1
Provider specific event 2
WINCE Power event.

// Wait failed, see LastError
// Canceled by user

Simulate XOFF received
Simulate XON received
Set RTS high
Set RTS low
Set DTR high

CETerm Scripting Guide

Page 150

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

var CLRDTR = 6; // Set DTR low

// Gap for NT code RESETDEV, not supported on CE

var SETBREAK = 8; // Set the device break line.
var CLRBREAK = 9; // Clear the device break line.

// Some devices share a UART between an IRDA port and a serial port.
// These escape functions allow control over the mode.

var SETIR = 10; // Set the port to IR mode.
var CLRIR = 11; // Set the port to non-IR mode.
//

// Purge mode flags.

//

var PURGE TXCLEAR = 0x0004; // Kill the transmit queue.

var PURGE RXCLEAR = 0x0008; // Kill the receive queue.

//

// Modem Status Flags

//

var MS CTS ON = 0x0010;

var MS DSR_ON = 0x0020;

var MS RING ON = 0x0040;

var MS RLSD ON = 0x0080;

WINDOW CONSTANTS

// Special window handle for broadcast
var HWND BROADCAST = OxFFFFFFFEF;

var WINDOW RELATIONS =

{

HWNDFIRST : 0xO0,
// The window of the same type that is highest in the z-order.
// If the specified window is a topmost window, the handle
// identifies the topmost window that is highest in the z-order.
// If the specified window is a child window, the handle
// identifies the sibling window that is highest in the z-order.

HWNDLAST : O0x1,
// The window of the same type that is lowest in the z-order.
// If the specified window is a topmost window, the handle
// identifies the topmost window that is lowest in the z-order.
// If the specified window is a child window, the handle
// identifies the sibling window that is lowest in the z-order.

HWNDNEXT . 0x2,
// The window below the specified window in the z-order.
// I1If the specified window is a topmost window, the handle
// identifies the topmost window below the specified window.
// If the specified window is a child window, the handle

CETerm Scripting Guide

Page 151

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

// identifies the sibling window below the specified window.

HWNDPREV : 0x3,
// The window above the specified window in the z-order.
// If the specified window is a topmost window, the handle
// identifies the topmost window above the specified window.
// If the specified window is a child window, the handle
// identifies the sibling window above the specified window.

OWNER : 0x4,
// The specified window's owner window, if any.
// This flag will not retrieve a parent window.

CHILD : 0x5

// The child window at the top of the z-order if the specified
// window is a parent window; otherwise, the retrieved handle
// is NULL.

}i

CETerm Scripting Guide Page 152

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Appendix 5 — Microsoft Virtual-Key (VK) Codes

This appendix lists the standard Microsoft Virtual-Key codes. These codes are
sent to applications when keys are pressed. Most devices generate only a small
subset of these codes, depending on the hardware keyboard. Some VK codes
are not applicable to Windows CE but are listed for completeness. Many
hardware vendors use unassigned values, between 0x01 and OxFF, for custom
behaviors. For additional details, search msdn.microsoft.com with the keywords
“virtual key codes” and see your hardware documentation.

Symbolic Name Value
VK_LBUTTON 0x01
VK RBUTTON 0x02
VK_CANCEL 0x03
VK_MBUTTON 0x04
VK XBUTTON1 0x05
VK_XBUTTONZ2 0x06
VK_BACK 0x08
VK_TAB 0x09
VK_CLEAR 0x0C
VK RETURN 0x0D
VK_SHIFT 0x10
VK _CONTROL Ox11
VK_MENU 0x12
VK_PAUSE 0x13
VK_CAPITAL 0x14
VK_KANA 0x15
VK JUNJA 0x17
VK_FINAL 0x18
VK HANJA 0x19
VK_ESCAPE 0x1B
VK _CONVERT 0x1C
VK_NONCONVERT 0x1D
VK_ACCEPT Ox1E
VK_MODECHANGE Ox1F
VK_SPACE 0x20
VK PRIOR 0x21
VK_NEXT 0x22
VK_END 0x23
VK_HOME 0x24
VK_LEFT 0x25

CETerm Scripting Guide Page 153

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name

Value

VK_UP

0x26

VK_RIGHT

0x27

VK_DOWN

0x28

VK_SELECT

0x29

VK_PRINT

Ox2A

VK_EXECUTE

0x2B

VK_SNAPSHOT

0x2C

VK_INSERT

0x2D

VK_DELETE

0x2E

VK_HELP

Ox2F

0x30

0x31

0x32

0x33

0x34

0x35

0x36

0x37

0x38

0x39

0x41

0x42

0x43

0x44

0x45

0x46

ox47

0x48

0x49

Ox4A

0x4B

0x4C

0x4D

Ox4E

Ox4F

0x50

0x51

0x52

0x53

0x54

Cl|HWDO|ITIOIZIZINRC—IITIOIMMOO|T P> O 0N WNRLO

0x55

CETerm Scripting Guide

Page 154

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name Value
V 0x56
W 0x57
X 0x58
Y 0x59
Z Ox5A
VK _LWIN 0x5B
VK_RWIN 0x5C
VK_APPS 0x5D
VK _SLEEP Ox5F
VK _NUMPADO 0x60
VK _NUMPAD1 0x61
VK _NUMPAD2 0x62
VK _NUMPAD3 0x63
VK _NUMPAD4 0x64
VK _NUMPADS 0x65
VK _NUMPADG 0x66
VK _NUMPAD7 0x67
VK _NUMPADS8 0x68
VK _NUMPAD9 0x69
VK MULTIPLY Ox6A
VK _ADD 0x6B
VK SEPARATOR 0x6C
VK SUBTRACT 0x6D
VK DECIMAL Ox6E
VK DIVIDE Ox6F
VK F1 0x70
VK_F2 0x71
VK F3 0x72
VK_F4 0x73
VK F5 0x74
VK_F6 0x75
VK_F7 0x76
VK F8 Ox77
VK_F9 0x78
VK F10 0x79
VK F11 OxX7A
VK F12 0x7B
VK F13 Ox7C
VK F14 0x7D
VK F15 OX7E
VK F16 OX7F

CETerm Scripting Guide

Page 155

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name Value
VK_F17 0x80
VK F18 0x81
VK_F19 0x82
VK F20 0x83
VK_F21 0x84
VK_F22 0x85
VK F23 0x86
VK_F24 0x87
VK_NUMLOCK 0x90
VK_SCROLL 0x91
VK LSHIFT OxAO0
VK RSHIFT OxAl
VK LCONTROL OxA2
VK RCONTROL OxA3
VK LMENU OxA4
VK RMENU OxA5
VK_BROWSER_BACK OxA6
VK BROWSER FORWARD OxA7
VK BROWSER REFRESH OxA8
VK_BROWSER _STOP OxA9
VK BROWSER SEARCH OxAA
VK BROWSER FAVORITES OxAB
VK BROWSER HOME OxAC
VK VOLUME MUTE OxAD
VK_VOLUME_DOWN OXAE
VK VOLUME UP OxAF
VK_MEDIA_ NEXT TRACK 0xBO
VK MEDIA PREV_TRACK 0xB1
VK_MEDIA_STOP 0xB2
VK MEDIA PLAY PAUSE 0xB3
VK LAUNCH MAIL 0xB4
VK_LAUNCH MEDIA SELECT 0xB5
VK LAUNCH APP1 OxB6
VK_LAUNCH_APP2 0xB7
VK_OEM 1 OxBA
VK_OEM_PLUS 0xBB
VK OEM_COMMA OxBC
VK _OEM_ MINUS OxBD
VK_OEM_PERIOD OxBE
VK_OEM 2 OxBF
VK_OEM 3 0xCO

CETerm Scripting Guide Page 156

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Symbolic Name Value
VK_OEM 4 0xDB
VK_OEM 5 0xDC
VK_OEM 6 0xDD
VK_OEM 7 OXDE
VK_OEM 8 OxDF
VK_OEM_AX OxE1
VK_OEM 102 OXE2
VK PROCESSKEY OxES5
VK PACKET OxE7
VK DBE ALPHANUMERIC OxFO
VK DBE_ KATAKANA OxF1
VK DBE HIRAGANA OxF2
VK_DBE_SBCSCHAR OxF3
VK DBE_DBCSCHAR OxF4
VK_DBE_ROMAN OxF5
VK _ATTN OxF6
VK CRSEL OxF7
VK EXSEL OxF8
VK EREOF OxF9
VK PLAY OxFA
VK ZOOM OxFB
VK _NONAME OxFC
VK PAl OxXFD
VK_OEM_CLEAR OxFE

CETerm Scripting Guide Page 157

Glossary

Automation Objects
Objects internal to CETerm that provide access to device, application, and
session features from the script engine.

CEBrowseX
A Naurtech ActiveX control which provides access to the CETerm Automation
Objects from a Windows Mobile device.

external
This is the name of an internal object in the DOM of the Windows CE 5.0 browser
that gives access to the CETerm Automation Objects.

IDA Action Code

An IDA Action Code defines a special device, application, or emulation action
within the Naurtech clients. IDA codes can be tied to keys, or KeyBars, and
invoked via META tags or JavaScript. See the Appendix for a list of values.

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Index

A

AbortButtonVisible - 61
AbortScript - 26
ActiveSession - 30
AddMetaltem - 37, 84, 85, 96
Alert - 33

Append - 43

ASCIIMode - 49
AssignHotKey - 56

B

Battery Constants - 143
BaudRate - 73

Beep - 33

Browser Error Constants - 144
Browser object - 37
Browser.AddMetaltem - 37
Browser.DoclLoaded - 38
Browser.Document - 38
Browser.Navigate - 37
Browser.RunScript - 37

ClearAllListeners - 39
ClearAllTimers - 26
ClearBreak - 70

ClearError - 70
ClearInterval - 26, 28
ClearListener - 39
ClearTimeout - 26, 29, 100, 106
ClipboardData - 35

Close (GPS) - 51

Close (SerialPort) - 70
Columns - 68

Copy - 43

Create - 39

CreateDirectory (File) - 44
CreateDirectory (FTP) - 47
CTSOutputFlowControl - 73
CursorColumn - 68
CursorRow - 68

C

CancelWaitForEvent - 70
CETerm object - 25
CETerm.AbortScript - 26
CETerm.ActiveSession - 30
CETerm.ClearAllTimers - 26
CETerm.ClearInterval - 26
CETerm.ClearTimeout - 26
CETerm.GetProperty - 26
CETerm.MaxSession - 30
CETerm.Message - 30, 60
CETerm.PlaySound (deprecated) - 26
CETerm.PlayTone (deprecated) - 27
CETerm.PostIDA - 27
CETerm.RunScript - 27
CETerm.SendIDA - 28
CETerm.SendText - 28
CETerm.Session - 28, 75
CETerm.SetInterval - 28
CETerm.SetProperty - 29
CETerm.SetScriptTimeout - 29
CETerm.SetTimeout - 29
CETerm.Textlnput - 30, 76
CheckParity - 73

D

DataBits - 73

Delete - 44

Delete (Event) - 40
DeleteAllEvents - 40
DeleteAllHotKeys - 57
DeleteDirectory - 47
DeleteFile (FTP) - 47
DeleteHotKey - 56
DeleteKey - 65
DeleteValue - 66

Device object - 25, 30
Device.GetBatterylInfo - 31
Device.GetPowerState - 31
Device.GPS - 32, 50
Device.Keyboard - 32, 55
Device.LastError - 32
Device.PowerStateRequest - 31
Device.ResetldleTimer - 31
Device.RFID - 32
Device.SerialPort - 32, 69
Device.Speech - 32

Device. Trigger - 32
Device.Vibrate - 32
DeviceStateChangeEvent - 53
DiscardReceivedNULL - 73
DisplayStatus - 68
DNSLookup - 61
DocLoaded - 38

Document - 38
DSRInputControl - 73
DSROutputFlowControl - 74
DTRControlMode - 74

CETerm Scripting Guide

Page 159

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

E FTP.CreateDirectory - 47
FTP.DeleteDirectory - 47
FTP.DeleteFile - 47

Enable (Keyboard) - 57 FTP.GetDirectory - 48
Enablelnput - 78 FTP.GetFile - 47

EnumerateKeys - 66 FTP.LastErrorText - 50
EnumerateValues - 66 FTP.ListFiles - 48

Event object - 35, 38 FTP.LoggedIn - 50
Event.ClearAllListeners - 39 FTP.Login - 48
Event.ClearListener - 39 FTP.Logout - 49

Event.Create - 39 FTP.OverwriteExistingLocalFile - 50
Event.Delete - 40 FTP.PassiveMode - 50
Event.DeleteAllEvents - 40 FTP.Port - 50
Event.GetHandlerScript - 40 FTP.PutFile - 49

Event.GetList - 40 FTP.RenameFile - 49
Event.GetName <41 FTP.ServerListsUTCFiletimes - 50
Event.IsExistingEvent - 41 FTP.SetDirectory - 49
Event.IsListenerSet - 41 FTP.UserName - 50

Event.LastError - 42

Event.Pulse - 41

Event.Reset - 41 G
Event.Set - 41

Event.SetListener - 42

Event.SetProcessListener - 42 GetAttributes - 44, 45, 110
EventCharacter - 74 GetBatterylnfo - 31
EventMask - 73 GetDesktop - 78

Exec - 34 GetDeviceState (GPS) - 52
ExecuteAction - 63 GetDirectory - 48
ExpectMonitor - 19, 29, 93, 102 GetErrorMessage - 34
ExpectMonitor Class - 103 GetFile (FTP) - 47

GetHandlerScript - 40
Getlnput - 76, 108

= GetList (Event) - 40
GetList (File) - 44
GetList (Process) - 63

File Attribute Constants - 145 GetList (Window) - 78
File object - 35, 43, 73 GetName (Event) - 41
F!Ie.Append - 43 GetOpenFileName - 45
File.Copy - 43 GetParent - 79
File.CreateDirectory - 44 GetPosition - 51
File.Delete - 44 GetPowerState - 31
File.GetAttributes - 44 GetProperty - 26, 100, 131
File.GetList - 44 GetRelative - 79
File.GetOpenFileName - 45 GetSaveFileName - 45
File.GetSaveFileName - 45 GetSelf - 79
File.LastError - 46 GetText (Screen) - 68
File.LastErrorMessage - 46 GetText (Window) - 79
File.Move - 45 GetTextLine - 68, 95, 97
File.Read - 45 GetTextRect - 68
File.RemoveDirectory - 45 GetTopmost - 79
File.SetAttributes - 46 GetValueType - 66
File.Write - 46 GPS object - 32, 50, 52
Find - 78 GPS. GetDeviceState - 52
FlushKey - 66 GPS. GetPosition - 51
FTP - 6_2 GPS.Close - 51

FTP object - 46 GPS.DeviceStateChangeEvent - 53
FTP. HostName - 49 GPS.IncludeSatelliteData - 53
FTP. LastError - 50 GPS.IsOpen - 53
FTP.ASCIIMode - 49 GPS.LastError - 53

CETerm Scripting Guide Page 160

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

GPS.LastPosition - 53
GPS.MaximumAge - 53
GPS.NewLocationDataEvent - 53
GPS.Open - 51

Keyboard.SimulateKeyUp - 58
KeyboardState - 68
Kill (Process) - 64

H

hasOwnProperty - 24
HostName - 49

IBM Status Constants - 145
IDA Action Codes - 16, 122
IncludeSatelliteData - 53
Input - 77

IsConnected - 76

IsEnabled (Keyboard) - 57
IsEnabled (Window) - 79
IsExistingEvent - 41
IsHotKey - 57

IskeyDown - 57
IskeyDownNow - 57
IsKeyToggled - 57
IsListenerSet - 41

I1sOpen (GPS) - 53

I1sOpen (SerialPort) - 73
IsVisible (Message) - 61
IsVisible (Window) - 80
IsWindow - 80

L

LastDNSError - 62
LastError - 50

LastError - 53

LastError - 58

LastError - 64

LastError - 73

LastError - 81
LastErrorText (FTP) - 50
LastExecuteProcess - 64
LastPingError - 62
LastPingHostName - 62
LastPingIPAddress - 62
LastPosition - 53
LastWSAError - 62
ListFiles - 48

Load at Startup - 14, 15, 119
LoggedIn - 50

Login - 48

Logout - 49

J

JavaScript Literal Values - 22
JavaScript Object Notation (JSON) - 22

K

Keyboard Constants - 146
Keyboard object - 32, 55, 58
Keyboard.AssignHotKey - 56
Keyboard.DeleteAllHotKeys - 57
Keyboard.DeleteHotKey - 56
Keyboard.Enable - 57
Keyboard.IsEnabled - 57
Keyboard.IsHotKey - 57
Keyboard.lsKeyDown - 57
Keyboard.lsKkeyDownNow - 57
Keyboard.IsKeyToggled - 57
Keyboard.LastError - 58
Keyboard.SimulateKeyDown - 58
Keyboard.SimulateKeyPress - 58

M

MaximumAge - 53
MaximumPingTimeout - 62
MaxSession - 30

Message - 30
Message.AbortButtonVisible - 61
Message.lIsVisible - 61
Message.Progress - 61
Message.ProgressRate - 61
Message.ProgressRunning - 61
Message.ProgressVisible - 61
Message.Text - 61
Message.Timeout - 61
Message.Title - 61
MessageBox - 34

MessageBox Constants - 147
ModemStatus - 73

Move - 45

N

Navigate - 37

Network object - 36, 61
Network.DNSLookup - 61
Network.FTP - 46, 62
Network.LastDNSError - 62
Network.LastPingError - 62

CETerm Scripting Guide

Page 161

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Network.LastPingHostName - 62
Network.LastPingIPAddress - 62
Network.LastWSAError - 62
Network.MaximumPingTimeout - 62
Network.Ping - 62
NewLocationDataEvent - 53

0]

OnBarcodeRead - 11, 16, 18, 83
OnDocumentDone - 84, 109
OnIBMCommand - 85
OnKeyboardStateChange - 86
OnNavigateError - 87
OnNavigateRequest - 89
OnNetCheckFailed - 90
OnProgramExit - 91
OnProgramStart - 91
OnSerialPortEvent - 92
OnSessionConnect - 19, 93
OnSessionDisconnect - 93
OnSessionDisconnected - 94
OnSessionReceive - 95
OnSessionSwitch - 96
OnStylusDown - 21, 96
OnTriggerEvent - 97
OnVTCommand - 98
OnWakeup - 99

Open (GPS) - 51

Open (SerialPort) - 70

OS object - 25, 33, 35

OS.Alert - 33

OS.Beep - 33
OS.ClipboardData - 35
OS.Event - 35, 38

OS.Exec (deprecated) - 33
OS.File - 35, 43
OS.GetErrorMessage - 34
OS.KillProcess (deprecated) - 34
OS.LastError - 35
OS.LastExecProcess (deprecated) - 35
0OS.LastOSError - 35
OS.MemoryStatus - 35, 36
0OS.MessageBox - 34
OS.Network - 36, 61
OS.PlaySound - 34
OS.PlayTone - 34

OS.Process - 36, 63
OS.Registry - 36, 65

OS.Sleep - 35

0OS.StopSound - 35
OS.TickCount - 36
OS.WaitForProcess (deprecated) - 35
OS.Window - 36, 77
OutputContinueOnXOFF - 74
OverwriteExistingLocalFile - 50

P

ParityMode - 74
PassiveMode - 50
PasswordMode - 77

Ping - 62

PlaySound - 34, 101
PlaySound Constants - 147
PlayTone - 34, 119

Port - 50

Portindex - 73

PortName - 73

PostIDA - 27
PostMessage - 80
PowerStateRequest - 31
Process object - 36, 63
Process.ExecuteAction - 63
Process.GetList - 63
Process.Kill - 64
Process.LastError - 64
Process.LastExecuteProcess - 64
Process.WaitForExit - 64
Progress - 61
ProgressRate - 61
ProgressRunning - 61
ProgressVisible - 61
Prompt - 77

Pulse - 41

PurgeQueues - 70

PutFile - 49

R

Read (File) - 45

Read (SerialPort) - 71
ReadByte - 71
ReadIntervalTimeout - 75
ReadTillByte - 71

ReadTotal TimeoutConstant - 75
ReadTotal TimeoutMultiplier - 75
ReadValue - 66, 111
ReadValueVVBArray - 66, 67
Registry Constants - 148
Registry object - 36, 65
Registry.DeleteKey - 65
Registry.DeleteValue - 66
Registry.EnumerateKeys - 66
Registry.EnumerateValues - 66
Registry.FlushKey - 66
Registry.GetValueType - 66
Registry.ReadValue - 66
Registry.ReadValueVBArray - 66
Registry.StringSeparator - 67
Registry.WriteValue - 67
RemoveDirectory - 45
RenamekFile - 49

CETerm Scripting Guide

Page 162

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Reset (Event) - 41
ResetldleTimer - 31
RFID object - 32
Rows - 68
RTSControlMode - 74
RunScript - 27, 37, 84

S

ScannerNavigate - 17

Screen object - 67

Screen.Columns - 68
Screen.CrosorRow - 68
Screen.CursorColumn - 68
Screen.DisplayStatus - 68
Screen.GetText - 68
Screen.GetTextLine - 68
Screen.GetTextRect - 68
Screen.KeyboardState - 68
Screen.Rows - 68
Screen.TextLineSeparator - 69
SendIDA - 28, 94

SendMessage - 80
SendMessageTimeout - 81

SendText - 17, 28, 104

Serial Port Constants - 149

SerialPort object - 32, 69
SerialPort.BaudRate - 73
SerialPort.CancelWaitForEvent - 70
SerialPort.CheckParity - 73
SerialPort.ClearBreak - 70
SerialPort.ClearError - 70
SerialPort.Close - 70

SerialPort. CTSOutputFlowControl - 73
SerialPort.DataBits - 73
SerialPort.DiscardReceivedNULL - 73
SerialPort. DSRInputControl - 73
SerialPort. DSROutputFlowControl - 74
SerialPort. DTRControlMode - 74
SerialPort.EventCharacter - 74
SerialPort.EventMask - 73
SerialPort.1sOpen - 73
SerialPort.LastError - 73
SerialPort.ModemStatus - 73
SerialPort.Open - 70
SerialPort.OutputContinueOnXOFF - 74
SerialPort.ParityMode - 74
SerialPort.PortIndex - 73
SerialPort.PortName - 73
SerialPort.PurgeQueues - 70
SerialPort.Read - 71
SerialPort.ReadByte - 71
SerialPort.ReadIntervalTimeout - 75
SerialPort.ReadTillByte - 71
SerialPort.ReadTotal TimeoutConstant - 75
SerialPort.Read Total TimeoutMultiplier - 75
SerialPort.RTSControlMode - 74

SerialPort.SetBreak - 71
SerialPort.SetQueueSizes - 71
SerialPort.StopBits - 74
SerialPort.WaitForEvent - 72
SerialPort.Write - 72
SerialPort.WriteByte - 72

SerialPort. WriteNULL - 72
SerialPort.WriteTotal TimeoutConstant - 75
SerialPort.WriteTotal TimeoutMultiplier - 75
SerialPort.WriteUrgent - 72

SerialPort. XOFFCharacter - 74
SerialPort. XOFFInputFlowControl - 74
SerialPort. XOFFOutputFlowControl - 74
SerialPort. XOFFUpperCushion - 74
SerialPort. XONCharacter - 74
SerialPort. XONLowerLimit - 74
ServerListsUTCFiletimes - 50

Service State Constants - 148

Session object - 28, 75
Session.Browser - 37, 76
Session.IsConnected - 76
Session.Screen - 67, 76

Set (Event) - 41

SetAttributes - 46

SetBreak - 71

SetDirectory - 49

SetInterval - 28

SetListener - 42

SetProcessListener - 42

SetProperty - 29, 131

SetQueueSizes - 71

SetScriptTimeout - 29

SetTimeout - 29, 100, 101, 105, 109, 110
SetTopmost - 81

Show - 81

Show Script Errors - 13
SimulateKeyDown - 58
SimulateKeyPress - 58
SimulateKeyUp - 58

Sleep - 35, 108

Speech object - 32

StopBits - 74

StopSound - 35

StringSeparator - 67

T

Text - 61

TextInput - 30, 76, 108
Textlnput.Getlnput - 76
Textlnput.Input - 77
TextInput.PasswordMode - 77
TextInput.Prompt - 77
Textlnput.Title - 77
TextLineSeparator - 69
TickCount - 36

Timeout - 61

CETerm Scripting Guide

Page 163

NAURTECH WEB BROWSER AND TERMINAL EMULATION FOR WINDOWS CE AND WINDOWS MOBILE

Title - 61, 77
Trigger object - 32

U

UserName - 50

Vv

Vibrate - 32
Virtual-Key Codes - 153
VK Codes - 153

w

WaitForEvent - 72
WaitForExit - 64
Window Constants - 151
Window object - 36, 77
Window.Enablelnput - 78
Window.Find - 78
Window.GetDesktop - 78
Window.GetList - 78
Window.GetParent - 79
Window.GetRelative - 79
Window.GetSelf - 79

Window.GetText - 79
Window.GetTopmost - 79
Window.IsEnabled - 79
Window.lIsVisible - 80
Window.IsWindow - 80
Window.LastError - 81
Window.PostMessage - 80
Window.SendMessage - 80
Window.SendMessageTimeout - 81
Window.SetTopmost - 81
Window.Show - 81

Write (File) - 46

Write (SerialPort) - 72

WriteByte - 72

WriteNULL - 72

WriteTotal TimeoutConstant - 75
WriteTotal TimeoutMultiplier - 75
WriteUrgent - 72

WriteValue - 67, 111

X

XOFFCharacter - 74
XOFFInputFlowControl - 74
XOFFOutputFlowControl - 74
XOFFUpperCushion - 74
XONCharacter - 74
XONLowerLimit - 74

CETerm Scripting Guide

Page 164

