Chapter

Computer Algebra System and Tutorial Modes (algebra fx 2.0 PLUS only)

7-1 Using the CAS (Computer Algebra System) Mode

7-2 Algebra Mode
7-3 Tutorial Mode
7-4 Algebra System Precautions

7-1 Using the CAS (Computer Algebra System) Mode

On the Main Menu, select the CAS icon to enter the CAS Mode.
The following table shows the keys that can be used in the CAS Mode.

Inputting and Displaying Data

Input in the Algebra Mode is performed in the upper part of the display, which is called the "input area." You can input commands and expressions at the current cursor location.

Calculation results appear in the lower part of the display, which is called the "output area."
When a calculation produces an equation or inequality, the lower part of the display is divided between a "natural result display area" for the result, and a "formula number area" for the formula number as shown below.

If all the result does not fit on the display, use the cursor keys to scroll it.

Inputting List Data

List: \{element, element, ..., element\}

- Elements should be separated by commas, and the entire set of elements should be enclosed within \{curly braces\}.
- You can input numeric values and expressions, equations, and inequalities as list elements.

Example To input List $\{1,2,3\}$

```
SHFIT X({)100203
SHHIFT % (}) ExE
```

$\frac{41,2,3)}{61,2,3)}$

■ Inputting Matrix Data

Matrix $(m \times n)$: [[(1,1) entry, (1,2) entry, $\ldots,(1, m)$ entry] [(2,1) entry,, $(2, n)$ entry]... [(m, n) entry,..,(m, n) entry]]

- The above input is arranged to show the relative positions of entries in the matrix. Actual input is an unbroken line, from left to right.
- Entries should be separated by commas, and the entire set of elements should be enclosed within [square brackets]. And each line also should be enclosed within [square brackets].
- You can input numeric values and expressions as matrix entries.

■ Inputting Vector Data

Vector: [component, component, ..., component]

- Components should be separated by commas, and the entire set of components should be enclosed within [square brackets].
- You can input numeric values and expressions as vector component entries.

Example To input Vector (1 2 3)

$[1,2,3]$
 $[1,2,3]$

Performing an Algebra Mode Operation

There are two methods that you can use for input in the Algebra Mode.

- Function menu command input
- Manual formula and parameter input

Menu Command Input

Press a function menu key to display the menu of functions for the type of operation you are trying to perform.
-TRNS ... \{formula transformation menu\}

- CALC ... \{formula calculation menu\}
-EQUA ... \{equation, inequality menu\}
- eqn ... \{calls up an equation stored in Equation Memory in accordance with a specified input value\}
- CLR ... \{variable/formula delete menu\}

Pressing the OPTN key displays the menu shown below.

- LIST ... \{list calculation menu\}
- MAT ... \{matrix calculation menu\}
- VECT ... \{vector calculation menu\}

For details on commands and their formats, see the "Algebra Command Reference" on page 7-1-11.

- Manual Formula and Parameter Input

You can use the function menus, OPTN key, and VARS key in combination to input formulas and parameters as described below.

- F3(EQUA) 1 (INEQUA)
- $\{>\} /\{<\} /\{z\} /\{\leq\}$... \{inequality $\}$
- OPTN key
$\bullet\{\infty\}\{$ Abs $\} /\{x!\} /\{$ sign $\} ..$. \{infinity\}/\{absolute value\}/\{factorial\}/\{signum function*1\}
- $\{$ HYP $\}$... \{hyperbolic\}/\{inverse hyperbolic\} functions
- \{sinh\}/\{cosh\}/\{tanh $\} /\left\{\right.$ sinh $\left.^{-1}\right\} /\left\{\cosh ^{-1}\right\} /\left\{\tanh ^{-1}\right\}$
- VARS key
- $\{\mathbf{Y n}\} /\{r n\} /\{\mathbf{X t n}\} /\{\mathbf{Y t n}\} /\{\mathbf{X n}\}$... input of graph memory $\{Y n\} /\{r n\} /\{X \mathrm{tn}\} /\{Y \mathrm{Yn}\} /\{\mathrm{Xn}\}$

Formula Memory

The CAS Mode has 28 formula variables. Variable names are the letters A through Z, plus r, and θ. CAS Mode formula variables are independent of standard value variables.

Example To assign a formula that differentiates $\sin (X)$ at $X(\cos (X))$ to variable A
F2 (CALC) 1 (diff) sin $\overline{X, \theta, T} \square$

\mid
${ }^{*}$ signum $(A)\left\{\begin{array}{l}1 \text { (real number, } A>0) \\ -1(\text { real number, } A<0) \\ \frac{A}{|A|}(A=\text { imaginary number }) \\ \text { Undefined }(A=0)\end{array}\right.$

Example To assign M to row 1 column 2 of variable A when the matrix is assigned to it

 $\frac{M \rightarrow \mathrm{H}[1,2]}{\left[\begin{array}{lll}1 & y & 3 \\ x & y & z\end{array}\right]}$

Example To recall the value of variable A when the list $\{X, Y, Z\}$ is assigned to it

To recall the first component (A [1]) of variable A when vector ($\mathrm{XY} \mathbf{Z}$) is assigned to it

A[1]
SHHFT \square (]) EXE
\%

Function Memory and Graph Memory

Function memory lets you store functions for later recall when you need them.
With graph memory, you can store graphs in memory. Press the VARS key and then input the name of the graph.

Example To differentiate $f_{1}=\boldsymbol{\operatorname { c o s }}(\mathrm{X})$, which is assigned to function memory f_{1}, at X

Example To differentiate $\mathrm{Y} 1=\boldsymbol{\operatorname { c o s }}(\mathrm{X})$, which is assigned to graph memory Y 1 , at X
F2 (CALC) 1 (diff)

diff(y1,X)
diff(y1,X)

- sin(X)
- sin(X)

Eqn Memory

When a calculation result is an equation or inequality, its formula number is displayed in the formula number area, and the equation is stored in Eqn memory. ${ }^{* 1}$ Stored equations can be recalled with the eqn command, rclEqn command or rclAlleqn command.

[^0]
- Answer (Ans) Memory and Continuous Calculation

Answer (Ans) memory and continuous calculation can be used just as with standard calculations. In the Algebra Mode, you can even store formulas in Ans memory.

Example To expand $(\mathrm{X}+1)^{2}$ and add the result to 2 X

F1(TRNS) 1 (expand)

Continuing:
T 2 区,, T EXE
$\frac{\text { Ans }+2 x}{x^{2}+4 x+1}$

- Replay Contents

Replay memory can be used in the input area. After a calculation is complete, pressing or $(\mathbb{D}$ in the input area recalls the formula of the last calculation performed. After a calculation or after pressing $\triangle \triangle$, you can press (\mathbb{A}) or $\boldsymbol{\nabla}$ to recall previous formulas.

Moving the Cursor Between Display Areas

When $\downarrow \boldsymbol{\wedge}$ indicates a calculation result that does not fit on the display, the cursor keys perform output area scrolling. To use the Replay Function from this condition, press F6 (\triangleright) F2 (SW). $\downarrow \triangle \boldsymbol{\square}$ change to a dotted line display to indicate that cursor key operations control the input area.

Pressing F2(SW) again moves the cursor back to the output area.
\# Pressing F6(D) F1(CLR) 3 (ALLEQU) deletes Eqn memory, Ans memory, and Replay memory contents.
\# You can input up to 255 bytes of data into the input area.

SET UP Items

- Angle ... Unit of angular measurement specification
- \{Deg\}/\{Rad\} ... \{degrees\}/\{radians\}
- Answer Type ... Result range specification
- \{Real\}/\{Cplx\} ... \{real number\}/\{complex number\}
- Display ... Display format specification (for approx only)
- \{Fix\}\{\{Sci\}/\{Norm\} ... \{number of decimal places\}/\{number of significant digits\}/
\{normal display format\}

■ Graph Function

Pressing F5 (GRPH) displays the graph formula screen, which you can use to input a graph formula. Press F4(G•VAR) if you want to input a graph memory.
You can also use the F1(SEL), F2 (DEL), and F3(TYPE) functions while the graph formula screen is on the display.
Press F6(DRAW) to draw a graph.

- RECALL ANS Function

Pressing F6 (\triangleright) F3(R•ANS) recalls Ans Memory contents.

Solution Memory

In the CAS Mode or ALGEBRA Mode, you can save the history of a calculation you perform (replay memory contents) into solution memory. This section describes how you can access and work with the contents of solution memory. Pressing F6(\triangleright) F4(MEM) on the CAS Mode or ALGEBRA Mode main menu display the initial solution memory screen shown below.

- \{SAVE\} ... \{saves the calculation history to solution memory\}
- \{DEL•A\}... \{deletes solution memory contents\}
- \{OPT\} ... \{optimizes solution memory\}
- \{DISP\} ... \{displays solution memory contents\}

- To save a calculation history to solution memory (Save)

On the initial solution memory screen, press F1 (SAVE).

Sove	
OK to Eave all CRS replay memor' contente?	
YES	HO

Press F1(YES) to save the calculation history to solution memory.

Pressing ESC returns to the solution memory initial screen.

- Pressing F6(NO) in place of F1(YES) returns to the solution memory initial screen without saving anything.

- To clear solution memory contents (Clear Memory)

On the initial solution memory screen, press F2(DEL•A).

Press F1(YES) to clear solution memory contents.
Pressing ESC returns to the solution memory initial screen.

- Pressing F6(NO) in place of F1(YES) returns to the solution memory initial screen without clearing anything.
- This clears both CAS Mode and ALGEBRA Mode memory contents. You cannot select the mode shows memory contents you want to delete.

- To display solution memory contents (Display Memory)

On the initial solution memory screen, press F6 (DISP).
This displays the oldest expression and result in solution memory. The bottom line shows the record number.

or $2 \times-3=-9$	E
	0601
EACEIDEL	HIUMTISELIHERT

- F6(DISP) is disabled when there is no data in Solution memory.
- To display the next record

Press F6(NEXT).

- To display the previous record

Press F1(BACK).

- Pressing F1(BACK) while the oldest record is on the display returns to the solution memory initial screen.

- To display a particular record

Press F5(SEL) and then input the number of the record you want to display.

Pressing EXE displays the record whose number you input.

- To delete a single solution memory record

Display the record you want to delete, and then press F2(DEL).
In response to the confirmation message that appears, press ExE(Yes) to delete the record you displayed.
To clear the above screen without deleting anything, press ESC(No).

- To toggle record number display on and off

Press F4(NUM) to toggle display of the record number on and off.

- To optimize solution memory (Optimization)

On the initial solution memory screen, press F3(OPT).
Pressing ESC returns to the solution memory initial screen.
Optimizing solution memory rearranges data and can free up more storage space. Perform the above procedure when solution memory capacity starts running low.

Algebra Command Reference

The following are the abbreviations used in this section.

- Exp ... Expression (value, formula, variable, etc.)
- Eq ... Equation
- Ineq ... Inequality
- List ... List
- Mat ... Matrix
- Vect ... Vector

Anything enclosed within square brackets can be omitted.

- expand

Function: Expands an expression.
Syntax: expand ($\{$ Exp/Eq/Ineq/List/Mat/Vect [)]
Example To expand (X+2) ${ }^{2}$

- rFactor (rFctor)

Function: Factors an expression up to its root.
Syntax: rFactor (\{Exp/Eq/Ineq/List/Mat/Vect\} [)]

Example To factor the $\mathrm{X}^{2}-3$

- factor

Function: Factors an expression.
Syntax: factor ($\{$ Exp/Eq/Ineq/List/Mat/Vect\} [)]
Example To factor $\mathrm{X}^{2}-4 \mathrm{X}+4$ F1(TRNS) 3 (factor) $\left.\overline{X, \theta, T]} x^{2} \square 4\right]$

- solve

Function: Solves an equation.
Syntax: solve(Eq [,variable] [)] solve($\{$ Eq-1,..., Eq- $n\}$, \{variable-1,...,variable- $n\}[$)]

Example To solve $A X+B=0$ for X

$$
X=\frac{-B}{A}
$$

Example To solve simultaneous linear equation $3 X+4 Y=5,2 X-3 Y=-8$ F1 (TRNS) 4 (solve) SHHFI \boldsymbol{X} ($\{$)

2 a AlPMA $\square(X) \square 3$ ALPMA $\square(Y)$ SHIFT $\bullet(=) \Theta 8$

- X is the default when no variable is specified.

- tExpand (tExpnd)

Function: Employs the addition theorem to expand a trigonometric function.
Syntax: tExpand(\{Exp/List/Mat/Vect $\}$ [)]

> Example To employ the addition theorem to expand $\sin (A+B)$
> F1(TRNS) 5(TRIG) 1 (tExpnd)

- tCollect (tCollc)

Function: Employs the addition theorem to transform the product of a trigonometric function to a sum.

Syntax: tCollect(\{Exp/List/Mat/Vect\} [)]

Example To employ the addition theorem to transform $\sin (A) \cos (B)$ to trigonometric sum
F1(TRNS) 5(TRIG) 2(tCollc)

$$
\frac{\sin (A+B)}{2}+\frac{\sin (A-B)}{2}
$$

- trigToExp (trigToE)

Function: Transforms a trigonometric or hyperbolic function to an exponential function.
Syntax: trigToExp(\{Exp/List/Mat/Vect\} [)]

Example To convert $\cos (\mathrm{iX})$ to an exponential function

- $\exp T o T r i g ~(\exp T o T)$

Function: Converts an exponential function to a trigonometric or hyperbolic function.
Syntax: expToTrig(\{Exp/List/Mat/Vect\} [)]
Example To convert e^{ix} to a trigonometric function
F1(TRNS) 5(TRIG) 4 (expToT)

- simplify (smplfy)

Function: Simplifies an expression.
Syntax: simplify(\{Exp/Eq/Ineq/List/Mat/Vect\} [)]

$$
\begin{aligned}
& \text { Example To simplify } 2 X+3 Y-X+3=Y+X-3 Y+3-X \\
& \text { F1(TRNS) } 6 \text { (smplfy) } 2 \text { alIPPA } \mp(\mathrm{X}) \mp 3 \text { aIPPMA } \square(\mathrm{Y})
\end{aligned}
$$

$$
\begin{aligned}
& \text { AAP阴 } \square(X) \text { EXE } X+3 Y+3=-2 Y+3
\end{aligned}
$$

- combine (combin)

Function: Adds and reduces rational expressions.
Syntax: combine(\{Exp/Eq/Ineq/List/Mat/Vect\} [)]

Example To reduce the fraction $(X+1) /(X+2)+X(X+3)$

- collect (collct)

Function: Rearranges an expression, focusing on a particular variable.
Syntax: collect(\{Exp/Eq/Ineq/List/Mat/Vect\} [,\{Exp/variable\}] [)]

Example To rearrange $X^{\mathbf{2}}+A X+B X$, focusing on the variable X

- X is the default when nothing is specified for [,\{Exp/variable\}].

- substitute (sbstit)

Function: Assigns an expression to a variable.
Syntax: substitute(\{Exp/Eq/Ineq/List/Mat/Vect\}, variable=expression
[,..., variable=expression] [)]

Example To assign 5 to X in $2 \mathrm{X}-1$

$$
\text { F1(TRNS) } 9 \text { (sbstit) } 2 \text { 区, }, \boldsymbol{\theta}, \mathrm{T} \square \square
$$

$$
\begin{aligned}
& \text { F1(TRNS) } 7 \text { (combin) } \square \boxed{x, \theta, T} \square \square \square
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{3}+5 x^{2}+7 x+1}{x+2}
\end{aligned}
$$

- cExpand (cExpnd)

Function: Expands x th root of imaginary number.
Syntax: cExpand(\{Exp/Eq/Ineq/List/Mat/Vect\} [)]

Example To expand $\sqrt{2} i$

- approx

Function: Produces a numerical approximation for an expression.
Syntax: approx(\{Exp/Eq/Ineq/List/Mat/Vect\} [)]

Example To obtain a numerical value for $\sqrt{2}$

F1 (TRNS) [100 (approx) 대TT $x^{2}(\sqrt{ }) 2$ EXE
1.414213562

Example
 920

Normal: 9 人 20 Exe
12157665459056928801
approx: F1(TRNS) ㅇog(approx) 9 人 20 ExE 1.215766546E+19 (Display: Norm1)

[^1]exponential format range specified by the Display item of the SET UP screen.

This means approx displays results in the CAS Mode the same way they are displayed in the RUN•MAT Mode.
－diff
Function：Differentiates an expression．
Syntax：diff（ \｛Exp／List\} [, variable, order, derivative] [)]
diff（ \｛Exp／List\}, variable [, order, derivative] [)]
diff（ \｛Exp／List\}, variable, order [, derivative] [)]

Example To differentiate X^{6} with respect to X

 F2（CALC） 1 （diff）区，区，T 囚 6 远－ X is the default when no variable is specified．
－ 1 is the default when no order is specified．
－ \int
Function：Integrates an expression．
Syntax： $\int($（Exp／List $\}$［，variable，integration constant］［ ）］
$\int($ EExp／List $\}$ ，variable［，integration constant］［ ）］
J（ \｛Exp／List\}, variable, lower limit, upper limit [)]
Example To integrate X^{2} with respect to X

－ X is the default when no variable is specified．
－lim
Function：Determines the limits of a function expression．
Syntax： $\lim (\{E x p / L i s t\}$, variable，point［，direction］［ ）］

Example To determine the limits of $\sin (X) / X$ when $X=0$

－Direction can be positive（from right）or negative（from left）．

- Σ

Function: Calculates a sum.
Syntax: $\Sigma($ \{Exp/List \}, variable, start value, end value [)]

Example To calculate the sum as the value of X in X^{2} changes from $X=1$ through $X=10$

- П

Function: Calculates a product.
Syntax: П(\{Exp/List\}, variable, start value, end value [)]

Example To calculate the product as the value of X in X^{2} changes from $X=1$ through $X=5$

- taylor

Function: Finds a Taylor polynomial.
Syntax: taylor(\{Exp/List\}, variable, order [, center point] [)]

Example To find a 5 th order Taylor polynomial for $\sin (X)$ with respect to $X=0$

- The default center point is zero.

- arcLen

Function: Returns the arc length.
Syntax: arcLen(\{Exp/List\}, variable, start value, end value [)]

Example To determine the arc length for X^{2} from $X=0$ to $X=1$

F2 (CALC) 7 (arcLen)	$\ln (4 \sqrt{5}+8)$	$\ln (2) \sqrt{5}$
	4	2

- tanLine (tanLin)

Function: Returns the expression for a tangent line.
Syntax: tanLine(\{Exp/List\}, variable, variable value at point of tangency [)]

Example To determine the expression for a line tangent with X^{3} when $X=2$ F2(CALC) 8 (tanLin) 区, 㫙

- denominator (den)

Function: Extracts the denominator of a fraction.
Syntax: denominator(\{Exp/List\} [)]

Example To extract the denominator of the fraction $(X+2) /(Y-1)$
F2 (CALC) 9 (EXTRCT) 1 (den)

- numerator (num)

Function: Extracts the numerator of a fraction.
Syntax: numerator(\{Exp/List\} [)]

Example To extract the numerator of the fraction $(X+2) /(Y-1)$

F2 (CALC) 9 (EXTRCT) 2 (num)

- gcd

Function: Returns the greatest common divisor.
Syntax: gcd(\{Exp/List\}, \{Exp/List\} [)]
Example To determine the greatest common divisor of $X+1$ and $X^{2}-3 X-4$

- Icm

Function: Obtains the least common multiple of two expressions
Syntax: Icm(\{Exp/List\}, \{Exp/List\} [)]
Example To obtain the least common multiple of $X^{2}-1$ and $X^{2}+2 X-3$

$$
\text { F2 } (\mathrm { CALC }) \operatorname { l o g } (\mathrm { Icm }) \longdiv { X , \theta , T } x ^ { 2 } \square 1 0
$$

$$
x^{3}+3 x^{2}-x-3
$$

- rclEqn

Function: Recalls multiple eqn memory contents.
Syntax: rclEqn(memory number [, ..., memory number] [)]

Example To recall the contents of equation memory 2 and equation memory 3
F3(EQUA) 2(rclEqn) 2 3 Ex

$$
\begin{array}{r}
3 X-Y=7 \\
3 X+6 Y=63
\end{array}
$$

- The memory numbers of equations produced as the result of a recall are not updated.

- rclAllEqn (rclAll)

Function: Recall all eqn memory contents.
Syntax: rclAllEqn

- The memory numbers of equations produced as the result of a recall are not updated.

- rewrite (rewrit)

Function: Moves the right side expression to the left side.
Syntax: rewrite(\{Eq/Ineq/List\} [)]
Example To move the right side expression of $X+3=5 X-X^{2}$ to the left side [F3 (EQUA) 4 (rewrit) X,, T, ∓ 3 [sHITT $\bullet(=)$

$x^{2}-4 x+3=0$

- exchange (exchng)

Function: Exchanges the right-side and left-side expressions.
Syntax: exchange(\{Eq/Ineq/List\} [)]

Example To exchange the left-side and right-side expressions of $3>5 \mathrm{X} \mathbf{- 2 Y}$ F3 (EQUA) 5 (exchng) 3 F3 (EQUA) 1 (INEQUA) 1 ($>$)

- eliminate (elim)

Function: Assigns an expression to a variable.
Syntax: eliminate($\{$ Eq/Ineq/List\} -1, variable, Eq-2 [)]

- getRight (getRgt)

Function: Gets the right-side element.
Syntax: getRight(\{Eq/Ineq/List\} [)]

Example To extract the right side element of $Y=2 X^{2}+3 X+5$
F33 (EQUA) 7 (getRgt) बALPHAA $\square(Y)$ SHIFI $\bullet(=)$

- invert

Function: Inverts two variables.
Syntax: invert(\{Exp/Eq/Ineq/List\} [,variable name 1, variable name 2] [)]
If you omit the variable names, variables X and Y are inverted.

Example To invert X and Y in the expression $2 X=Y$

$2 Y=X$

- absExpand (absExp)

Function: Divides an expression that contains an absolute value into two expressions.
Syntax: absExpand(\{Eq/Ineq\} [)]

Example To strip the absolute value from $|2 X-3|=9$

F3 (EQUA) 9 (absExp) OPTN F5 (Abs) 0
$2 \mathrm{X}-3=9$
1

or $2 \mathrm{X}-3=-9 \mathbf{2}$

- andConnect (andCon)

Function: Connects two inequalities into a single expression.
Syntax: andConnect(Ineq-1, Ineq-2 [)]

Example To combine $X>-1$ and $X<3$ into a single inequality F3 (EQUA) $\overline{X, \theta, T}$ (andCon) $\overline{X, O, T}$ F3 (EQUA) 1 (INEQUA) 1 ($>$)

- eqn

Function: Recalls eqn memory contents.
Syntax: eqn(memory number [)]

Example To add 15 to both sides of the equation $6 \mathrm{X}-15=\mathrm{X}-7$, which is stored in equation memory 3

- clear (clrVar)

Function: Clears the contents of specific equation (A to Z, r, θ)..*1
Syntax: clear(variable [)]
clear(\{variable list\} [)]

Example To clear the contents of variable A

Example To clear the contents of variables X, Y, and Z

- clearVarAll (VarAll)

Function: Clears the contents of all 28 variables (A to Z, r, θ).
Syntax: clearVarAll
*'When you start out with memories A, B, C, and D, for example, and delete memories A and B, the display shows only C, D because they are the only memories remaining.

- List Calculation Commands

- Dim

Function: Returns the dimension of a list.
Syntax: Dim List
Example To determine the dimension of list $\{1,2,3\}$
OPTN F1(LIST) 1 (CALC) 1 (Dim) SHIFT $\mathbf{X}() 10203$
SHFIT $\div(\})$ EXE

- Min

Function: Returns the minimum value of an expression or the elements in a list.
Syntax: Min(\{List/Exp\} [)]
Min(\{List/Exp\}, \{List/Exp\} [)]

Example To determine the minimum value of the elements in list $\{1,2,3\}$
 SHHFT $\div(\})$ ㅈx

Example To compare each element of list $\{1,2,3\}$ with the value 2, and produce a list whose elements are the minimum value resulting from each comparison
 SHHIFT

Example To compare the elements of list $\{1,2,3\}$ and list $\{3,1,2\}$, and produce a list whose elements are the minimum value resulting from each comparison

- Max

Function: Returns the maximum value of an expression or the elements of a list.
Syntax: Max(\{List/Exp\} [)] $\operatorname{Max}(\{L i s t / E x p\},\{$ List/Exp $\}$ [)]

Example To determine the maximum value of the elements in list $\{1,2,3\}$ OPTN F1 (LIST) 1 (CALC) 3 (Max) SHIFT $\boldsymbol{x}() 10203$ SㅐTT $\div(\})$) ExE

Example To compare each element of list $\{1,2,3\}$ with the value 2, and produce a list whose elements are the maximum value resulting from each comparison
OPTN F1 (LIST) 1 (CALC) 3 (Max) SHITT \boldsymbol{X} (\{) 10203 SHIFT $\div(\})$ EXE

Example To compare the elements of list $\{1,2,3\}$ and list $\{3,1,2\}$, and produce a list whose elements are the maximum value resulting from each comparison

OPTN F1 (LIST) 1 (CALC) 3 (Max) SHIFT $\mathbb{X}() 10203$

- Mean

Function: Returns the mean of the elements in a list.
Syntax: Mean(List [)]
Mean(List, List [)]
The list must contain values or mathematical expressions only. Equations and inequalities are not allowed.

> Example To determine the mean of the elements in list $\{1,2,3\}$
> OPTN F1(LIST) 1 (CALC) 4 (Mean) SHIFT $\boldsymbol{x}() 10203$ SHFIT \div ($\}$) ExE

Example To determine the mean of the elements in list $\{1,2,3\}$ when their frequencies are $\{3,2,1\}$

```
OPTN F1(LIST) 1(CALC) 4(Mean) SHIFT X( { ) 10, 2 0 3
```


- Median

Function: Returns the median of the elements in a list.
Syntax: Median(List [)]
Median(List, List [)]
The list must contain values or mathematical expressions only. Equations and inequalities are not allowed.

Example To determine the median of the elements in list $\{1,2,3\}$ OPTN F1(LIST) 1 (CALC) 5 (Median) SHITT \boldsymbol{X} ($\{$) 10203 SHITT \div ($\}$) EXE

Example To determine the median of the elements in list $\{1,2,3\}$ when their frequencies are $\{3,2,1\}$

- Sum

Function: Returns the sum of the elements in a list.
Syntax: Sum List
The list must contain values or mathematical expressions only. Equations and inequalities are not allowed.

Example To determine the sum of the elements in list $\{1,2,3\}$
OPTN F (LIST) 1 (CALC) 6 (Sum) SHIFT \boldsymbol{X} ($\{$) 102 SHITF \div ()) ExE

- Prod

Function: Returns the product of the elements in a list.
Syntax: Prod List
The list must contain values or mathematical expressions only. Equations and inequalities are not allowed.

Example To determine the product of the elements in list $\{2,3,4\}$ OPTN F1(LIST) 1 (CALC) 7 (Prod) SHIFT \boldsymbol{x} (\{) $2 \rightarrow 3$ SHIFT $\div(\})$ EXE

- Cuml

Function: Returns the cumulative frequency of the elements in a list.
Syntax: Cuml List
The list must contain values or mathematical expressions only. Equations and inequalities are not allowed.
Example To determine the cumulative frequency of the elements in list $\{1,2,3\}$ OPTN F1 (LIST) 1 (CALC) 8 (Cuml) SHIFT $\times(\{) 10203$ SHHFT $\div(\})$ ㅌXE

- Percent (\%)

Function: Returns the percentage of each element in a list, the sum of which is assumed to be 100.

Syntax: Percent List
The list must contain values or mathematical expressions only. Equations and inequalities are not allowed.

Example To determine the percentage of each element in the list $\{1,2,3\}$ OPTN F1(LIST) 1 (CALC) 9 (\%) SHFTT $\mathbf{X}() 10203$ SHFIT \div ($\}$) Exe $\left\{\frac{50}{3}, \frac{100}{3}, 50\right\}$

- Δ List

Function: Returns a list whose elements are the differences between the elements of another list.

Syntax: $\boldsymbol{\Delta}$ List List
The list must contain values or mathematical expressions only. Equations and inequalities are not allowed.

```
Example To generate a list whose elements are the differences between the elements of list \(\{1,2,4\}\)
OPTN F1 (LIST) 1 (CALC) X, XTT ( \(\Delta\) List) SHIFT \(\boldsymbol{X}() 10204\) SHIFT \(\div\) ( \} ) ExE

\section*{- StdDev}

Function: Returns the sample standard deviation of the elements in a list.
Syntax: StdDev List
The list must contain values or mathematical expressions only. Equations and inequalities are not allowed.

Example To determine the sample standard deviation of the elements in list \{1, 2, 4\}


\section*{- Variance (Vari)}

Function: Returns the variance of the elements in a list.
Syntax: Variance List
The list must contain values or mathematical expressions only. Equations and inequalities are not allowed.

Example To determine the variance of the elements in list \(\{1,2,4\}\)
 SHNTI \({ }^{\circ}\) ( \} ) EXE

\section*{- Seq}

Function: Generates a list in accordance with a numeric sequence expression.
Syntax: Seq( Exp, variable, start value, end value, [increment] [ ) ]
If you do not specify an increment, an increment of 1 is used.

\section*{Example To generate a list in accordance with the expression: value \(A\), end value \(3 A\), increment \(A\) \\  \\ }

\section*{- Augment (Augmnt)}

Function: Returns a new list that appends List 2 to List 1.
Syntax: Augment( List, List [ ) ]

Example To combine list \(\{1,2\}\) and list \(\{3,4\}\)
OPTN F1(LIST) 2 (CREATE) 2 (Augmnt) SHIFT \(\boldsymbol{x}() 102\)


\section*{- Fill}

Function: Replaces the elements of a list with a specified value or expression.
This command can also be used to create a new list whose elements all contain the same value or expression.

Syntax: Fill( \{Exp/Eq/Ineq\}, List [ ) ]
Fill( Exp, numeric value [ ) ]

\section*{Example To replace the elements of list \(\{3,4\}\) with \(X\) OPTN F1 (LIST) 2 (CREATE) 3 (Fill) X,Q,TT \(\rightarrow\) SHIFT \(\mathbf{X}()\) \\ 3 ( 4 SHIFT \(\div( \})\) ExE \(\{\mathbf{X}, \mathbf{X}\}\)}

Example To create a list with eight elements, all of which are \(X\)
OPTN F1(LIST) 2 (CREATE) 3 (Fill) X,Q,T 8 EXE \(\{\mathbf{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}\}\)

\section*{- SortA}

Function: Sorts the elements of a list into ascending order.
Syntax: SortA( List [ ) ]
The list must contain values or mathematical expressions only. Equations and inequalities are not allowed.

\section*{Example To sort the elements of list \(\{1,5,3\}\) into ascending order
 SHITT \(\div\) ( \} ) EXE \(\{1,3,5\}\)}

\section*{- SortD}

Function: Sorts the elements of a list into descending order.
Syntax: SortD( List [ ) ]
The list must contain values or mathematical expressions only. Equations and inequalities are not allowed.

\section*{Example To sort the elements of list \(\{1,5,3\}\) into descending order OPTN F1(LIST) 2 (CREATE) 5 (SortD) SHIFT \(\boldsymbol{x}\) ( ) ) 10503
}

\section*{- SubList (SubLst)}

Function: Extracts a specific section of a list into a new list.
Syntax: SubList( List, start number [, end number] [ ) ]

\section*{Example To extract element 2 through element 3 from list \{1, 2, 3, 4\} \\ OPTN F1(LIST) 2 (CREATE) 6 (SubLst) SHIFT \(\boldsymbol{X}() 102063\) \\ 94 SH⿰flif}
- If you do not specify an end number, all the elements from the start number to the end of the list are extracted.
- List \(\rightarrow\) Mat (L \(\rightarrow\) Mat)

Function: Converts lists into a matrix.
Syntax: List \(\rightarrow\) Mat( List [ , ... ,List ] [ ) ]

Example To convert list \(\{3,5\}\) and list \(\{2,4\}\) into a matrix OPTN F1 (LIST) \(3(\) LIST \(\rightarrow\) ) \(1(\mathrm{~L} \rightarrow \mathrm{Mat})\) SHIFT \(\boldsymbol{x}() 3 \square 5\)

- List \(\rightarrow\) Vect ( \(\mathbf{L} \rightarrow\) Vect)

Function: Converts a list into a vector.
Syntax: List \(\rightarrow\) Vect List

\section*{Example To convert list \(\{3,2\}\) into a vector OPTN F1(LIST) 3(LIST \(\rightarrow\) ) \(2(\mathrm{~L} \rightarrow \mathrm{Vect}\) ) SHIFT \(\boldsymbol{x}() 3 \boldsymbol{2}\) SHIFT \(\div\) ( \} ) ExE}

\section*{Matrix Calculation Commands}

\section*{- Dim}

Function: Returns the dimensions of a matrix.
Syntax: Dim Mat

\section*{Example To determine the dimensions of the matrix below}
\(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\)

OPTN F2 (MAT) 1 (CALC) 1 (Dim) SHHFT \(\square\) ( [ ) SHIFT \(\mp\) ( [ )



\section*{- Det}

Function: Returns the determinant of a matrix.
Syntax: Det Mat

Example To determine the determinant of the matrix below
\(\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]\)

102 SHIFT ( ) SHHFT \(\boxplus\) ( [ ) \(4 \square 5\)


\section*{- Norm}

Function: Returns the norm of a matrix.
Syntax: Norm Mat

Example To determine the norm of the matrix below
\(\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]\)


SHHFIT ( ) ) SHHIFT (]) EXE

\section*{- EigVc}

Function: Returns the eigenvector of a matrix.
Syntax: EigVc Mat

\section*{Example To determine the eigenvector of the matrix below}
\(\left[\begin{array}{ll}3 & 4 \\ 1 & 3\end{array}\right]\)

OPTN F2(MAT) 1 (CALC) 4 (EigVc)



[ 0.44721359550 .4472135955\(]\)
Eigenvectors are stacked vertically on the display.
In this example, (0.894427191 0.4472135955 ) are the eigenvectors that correspond to 5 , while ( \(-0.894427191 \quad 0.4472135955\) ) are the eigenvectors that correspond to 1.
An eigenvector has an infinite number of solutions. The eigenvector displayed by this command is the one with a size of 1 .

\section*{- EigVI}

Function: Returns the eigenvalue of a matrix.
Syntax: EigVI Mat

\section*{Example To determine the eigenvalue of the matrix below}
\(\left[\begin{array}{ll}3 & 4 \\ 1 & 3\end{array}\right]\)

OPTN F2 (MAT) 1 (CALC) 5 (EigVI) SHIFI \(\square\) ( [ ) SHIFT \(\square\) ( [ )



\section*{- Rref}

Function: Returns the reduced row echelon form of a matrix.
Syntax: Rref Mat

\section*{Example To determine the reduced row echelon form of the matrix below}
\[
\left[\begin{array}{rrrr}
-2 & -2 & 0 & -6 \\
1 & -1 & 9 & -9 \\
-5 & 2 & 4 & -4
\end{array}\right]
\]

OPTN F2 (MAT) 1 (CALC) 6 (Rref) SHHIT \(\Phi\) ( [ ) SHIFT \(\boxplus\) ( [ )


 SHHFT \(\square\) (]) SHIFI \(\because\) (]) EXE
\(\left[\begin{array}{cccc}1 & 0 & 0 & \frac{66}{71} \\ 0 & 1 & 0 & \frac{147}{71} \\ 0 & 0 & 1 & -\frac{62}{71}\end{array}\right]\)

\section*{- Ref}

Function: Returns the row echelon form of a matrix.
Syntax: Ref Mat

\section*{Example To determine the row echelon form of the matrix below}
\[
\left[\begin{array}{rrrr}
-2 & -2 & 0 & -6 \\
1 & -1 & 9 & -9 \\
-5 & 2 & 4 & -4
\end{array}\right]
\]




SHHFT \(\square\) (]) SHIFT \(\square\) (]) EXE
\(\left[\begin{array}{llll}1 & 1 & 0 & 3 \\ 0 & 1 & -\frac{9}{2} & 6 \\ 0 & 0 & 1 & \\ & -\frac{62}{71}\end{array}\right]\)

\section*{- LU}

Function: Returns the LU resolution of a matrix.
Syntax: LU( Mat, lower memory, upper memory)

\section*{Example To determine the LU resolution of the matrix below}
\(\left[\begin{array}{ccc}6 & 12 & 18 \\ 5 & 14 & 31 \\ 3 & 8 & 18\end{array}\right]\)

The lower matrix is assigned to variable A, while the upper matrix is assigned to variable B. OPTN F2 (MAT) 1 (CALC) 8 (LU) SHIFT \(\boxplus\) ( [ ) SHHFT \(\boxplus\) ( [ )


\(3 \square 8 \square 18\) BHIFT\(\square(\mathrm{l})\) SHIFT \(\square(\mathrm{l})\)
\(\left[\begin{array}{lll}6 & 12 & 18 \\ 0 & 4 & 16 \\ 0 & 0 & 1\end{array}\right]\)

The upper matrix is displayed as the calculation result.
To display the lower matrix, recall the lower matrix variable (A in this example) specified by the command.

\[
\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{5}{6} & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & 1
\end{array}\right]
\]

To display the upper matrix, recall the upper matrix variable ( \(B\) in this example) specified by the command.
- Trn

Function: Transposes a matrix.
Syntax: Trn Mat

\section*{Example To transpose the matrix below}
\(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\)

OOPTN F2 (MAT) 2 (CREATE) 1 (Trn) SHIFT \(\square\) ( [ ) SHHTT \(\square\) ( [ )

SHHTT (]) SHIFT \(\Theta\) (]) ExE

\section*{- Augment (Augmnt)}

Function: Combines two matrices.
Syntax: Augment( Mat, Mat [ ) ]

\section*{Example To combine the two matrices below}
\(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]\)
OPTN F2 (MAT) 2 (CREATE) 2 (Augmnt) SHIFI \(\boldsymbol{\square}\) ( [ ) SHHFT \(\mathbb{\square}\) ( [ )



SHHFT \(\square\) (]) SHIFI \(\square\) (]) EXE
\(\left[\begin{array}{llll}1 & 2 & 5 & 6 \\ 3 & 4 & 7 & 8\end{array}\right]\)
- Identify (Ident)

Function: Creates an identity matrix
Syntax: Ident numeric value

\section*{Example To create a \(2 \times 2\) identity matrix}

OPTN F2(MAT) 2 (CREATE) 3 (Ident) 2 EXE
- Fill

Function: Replaces the elements of a matrix with a specified value or expression.
This command can also be used to create a new matrix whose elements all contain the same value or expression.
Syntax: Fill( Exp, Mat [ ) ]
Fill( Exp, number of lines, number of rows [ ) ]

Example To replace the elements of the matrix below with \(X\)
\(\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]\)




\section*{Example To create a \(\mathbf{2 \times 3}\) matrix, all of whose entries are \(\mathbf{X}\)} OPTN F2(MAT) 2 (CREATE) 4 (Fill) XA,

\section*{- SubMat}

Function: Extracts a specific section of a matrix into a new matrix.
Syntax: SubMat( Mat [, start row] [, start column] [, end row] [, end column] [ ) ]

Example To extract the section from row 2, column 2 to row 3, column 3 from the following matrix
\(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\)

OPTN F2 (MAT) 2 (CREATE) 5 (SubMat) SHIFT \(\boxplus\) ( [ ) SHIFT \(\mp\) ( [ )



- If you do not specify an end row and column, all the entries from the start row/column to the end of the matrix are extracted.

\section*{- Diag}

Function: Extracts the diagonal elements of a matrix.
Syntax: Diag Mat

\section*{Example To extract the diagonal elements of the matrix below}
\(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\)

OPTN F2 (MAT) 2 (CREATE) 6 (Diag) SHIFT \(\boxplus\) ( [ ) SHIFT \(\boxplus\) ( [ )
102 SHHFT \(\square\) ( ) SHHFT \(\boxplus\) ( [ ) \(3 \square 4\) SHHFT \(\square\) (]) SHIFT \(\square\) ( ) ) ExE

\section*{- Mat \(\rightarrow\) List (M \(\rightarrow\) List)}

Function: Converts a specific column of a matrix into a list.
Syntax: Mat \(\rightarrow\) List( Mat, column number [ ) ]

Example To convert column 2 of the matrix below to a list
\(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\)

OPTN F2 (MAT) 3 (MAT \(\rightarrow\) ) \(1(\mathrm{M} \rightarrow\) List) SHIFT \(\mp([)\) SHIFT \(\square([)\)


- Mat \(\rightarrow\) Vect (M \(\rightarrow\) Vect)

Function: Converts a specific column of a matrix into a vector.
Syntax: Mat \(\rightarrow\) Vect( Mat, column number [ ) ]

\section*{Example To convert column 2 of the matrix below to a vector}
\(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\)


SHHFIT \(\square\) ( ) SHHIF \(\square(]) \square 2\) EXE

\section*{- Swap}

Function: Swaps two rows of a matrix.
Syntax: Swap Mat, row number 1, row number 2

\section*{Example To swap row 1 with row 2 of the following matrix}
\(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\)

OPTN F2 (MAT) 4 (ROW) 1 (Swap) 애FIT \(\square\) ( [ ) SHHIFT \(\boxplus\) ( [ )


\section*{- *Row}

Function: Returns the scalar product of a row of a matrix.
Syntax: *Row( Exp, Mat, row number [ ) ]

\section*{Example To multiply row 1 of the matrix below by \(\mathbf{X}\)}
\(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\)

OPTN F2 (MAT) 4 (ROW) 2 (*Row) X,QTT 9 SHIFT \(\square\) ( [ )



\section*{- *Row+}

Function: Calculates the scalar product of one row of a matrix and adds the result to another row.
Syntax: *Row+( Exp, Mat, line number 1, line number 2 [ ) ]

Example To multiply row 1 of the matrix below by X, and add the result to row 2
\(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\)



\section*{- Row+}

Function: Adds one row of a matrix and to another row.
Syntax: Row+( Mat, row number 1, row number 2 [ ) ]

\section*{Example To add row 1 of the matrix below to row 2}


OPTN F2 (MAT) 4 (ROW) 4 (Row+) SHIFT \(\boldsymbol{\square}\) ( [ )



\section*{Vector Calculation Commands}

\section*{- Dim}

Function: Returns the dimension of a vector.
Syntax: Dim Vect

\section*{Example To determine the dimension of the vector (123)} OPTN F3 (VECT) 1 (CALC) 1 (Dim) SHIFT \(\square\) ( [ ) 10203 SHHFT \(\square\) (]) EXE
- CrossP

Function: Returns the cross product of two vectors.
Syntax: CrossP( Vect, Vect [ ) ]

> Example To determine the cross product of vector (123) and vector (456) OPTN F3 (VECT) 1 (CALC) 2 (CrossP) SHHFT \(\mp([) 10203\)
- DotP

Function: Returns the dot product of two vectors.
Syntax: DotP( Vect, Vect [ ) ]

Example To determine the dot product of vector (123) and vector (456) OPTN F3 (VECT) 1 (CALC) 3 (DotP) SHHFT \(\boxplus\) ( [ ) 10203


\section*{- Norm}

Function: Returns the norm of a vector.
Syntax: Norm Vect

\section*{Example To determine the norm of the vector (12ll \(\left.\begin{array}{ll}1 & 2\end{array}\right)\)} OPTN F3 (VECT) 1 (CALC) 4 (Norm) SHIFT \(\square\) ( ) 10203 SHHFT \(\square\) (]) EXE

\section*{- UnitV}

Function: Normalizes a vector.
Syntax: UnitV Vect
```

Example To normalize a vector (123)
OPTN F3(VECT) 1 (CALC) 5 (UnitV)

```

```

SHHFF ()) ExE

$$
\left[\frac{\sqrt{14}}{14}, \frac{\sqrt{14}}{7}, \frac{3 \sqrt{14}}{14}\right]
$$

```

\section*{- Angle}

Function: Returns the angle formed by two vectors.
Syntax: Angle( Vect, Vect [ ) ]

\section*{Example To determine the angle formed by vector (12) and vector (3 4) (Unit Angle: Rad) \\ OPTN F3(VECT) 1 (CALC) 6 (Angle) SHIFT \(\boxplus\) ( [ ) 102
 \(\cos ^{-1}\left[\frac{11 \sqrt{5}}{25}\right]\)}

\section*{- Augment (Augmnt)}

Function: Combines two vectors.
Syntax: Angle( Vect, Vect [ ) ]

Example To combine vector (12) and vector (3 4)
OPTN F3(VECT) 2 (CREATE) 1 (Augmnt) SHIFI \(\boldsymbol{\square}\) ([ ) 102


\section*{- Fill}

Function: Replaces the elements of a vector with a specified value or expression.
Syntax: Fill( Exp, Vect [ ) ]

\section*{Example To replace the components of the vector below with \(X\)}

\(3 \square 4\) SHIFT ( ) EXE

\section*{- Vect \(\rightarrow\) List (V \(\rightarrow\) List)}

Function: Converts a vector into a list.
Syntax: Vect \(\rightarrow\) List Vect

\section*{Example To convert vector (3 2) into a list \\ OPTN F3 (VECT) \(3(\mathrm{VECT} \rightarrow\) ) \(1(\mathrm{~V} \rightarrow\) List) SHIFT \(\rightarrow([) 3 \square 2\) SHHIFT ( ) ) EXE}

\section*{- Vect \(\rightarrow\) Mat (V \(\rightarrow\) Mat)}

Function: Converts vectors into a matrix.
Syntax: Vect \(\rightarrow\) Mat (Vect [, ... ,Vect ] ( ] )

\section*{Example To convert vector (35) and (24) into a matrix OPTN F3 (VECT) \(3(\mathrm{VECT} \rightarrow\) ) \(2(\mathrm{~V} \rightarrow \mathrm{Mat})\) [sHIFT \(\boxplus([) 3 \square 5\) \\ \(\left[\begin{array}{ll}3 & 2 \\ 5 & 4\end{array}\right]\)}

\section*{7-2 Algebra Mode}

The CAS Mode automatically provides you with the final result only. The Algebra Mode, on the other hand, lets you obtain intermediate results at a number of steps along the way.

On the Main Menu, select the ALGEBRA icon to enter the Algebra Mode. The screens in this mode are the same as those in the CAS Mode.

Operations in the Algebra Mode are identical to those in the CAS Mode, except for a number of limitations. Also, the following commands are available in the Algebra Mode only.

\section*{- arrange (arrang)}

Function: Collects like terms and arranges them in order, starting with the term that contains the smallest coefficient.
Syntax: arrange( \{Exp/Eq/Ineq\} [ ) ]

\section*{Example To arrange \(2 \mathrm{X}+3-5 \mathrm{X}+8 \mathrm{Y}\) in sequence of its variables

}

\section*{- replace (replac)}

Function: Replaces a variable with the expression assigned to the corresponding expression variable.

Syntax: replace( \{Exp/Eq/Ineq\} [ ) ]

\section*{Example To replace \(S\) in the expression \(3 X+2 S\), when the expression \(2 X+1\) is assigned to \(S\)}


\section*{7-3 Tutorial Mode}

On the Main Menu, select the TUTOR icon to enter the Tutorial Mode.

\section*{- Tutorial Mode Flow}
1. Specify the expression type.
2. Define the expression.
3. Specify the solve mode.

\section*{Specifying the Expression Type}

Entering the Tutorial Mode displays a menu of the following expression types.
- Linear Equation
- Linear Inequality
- Quadratic Equation
- Simul (Simultaneous) Equation

Use the cursor keys to highlight the expression type you want to specify, and then press EXE.
This displays a list of formulas for the expression type you select. Move the cursor to the formula you want to use.

In the case of Linear Inequality, press F5 (TYPE) to select the inequality type.

The following shows the formulas available for each type of expression.

\section*{Linear Equation - 6 Types}
- \(A X=B\)
- \(\mathrm{X}+\mathrm{A}=\mathrm{B}\)
- \(A X+B=C\)
- \(A X+B=C X+D\)
- \(A(B X+C)=D(E X+F)\)
- \(|A X+B|=C\)

\section*{Linear Inequality - \(6 \times 4\) Types}
- \(A X\{><\geqq \leqq\} B\)
- \(\mathrm{X}+\mathrm{A}\{><\) § \(\leqq\} \mathrm{B}\)
- \(\mathrm{AX}+\mathrm{B}\{><\) §
- \(A X+B\{><\geqq \leqq\} C X+D\)
- \(A(B X+C)\{><\geqq \leqq\} D(E X+F)\)
- \(|A X+B|\{><\geqq \leqq\} C\)

\section*{Quadratic Equation - 5 Types}
- \(A X^{2}=B\)
- \((A X+B)^{2}=C\)
- \(A X^{2}+B X+C=0\)
- \(A X^{2}+B X+C=D\)
- \(A X^{2}+B X+C=D X^{2}+E X+F\)

Simul Equation - 10 Types
- \(A X+B Y=C\)
\(D X+E Y=F\)
- \(A X+B Y+C=0\)
\(D X+E Y+F=0\)
- \(A X+B Y=C\)
\(Y=D X+E\)
- \(A X+B Y=C\)
\(D X+E Y+F=G X+H Y+I\)
- \(A X+B Y+C=D X+E Y+F\)
\(Y=G X+H\)
\[
\cdot \mathrm{Y}=\mathrm{AX}+\mathrm{B}
\]
\[
Y=C X+D
\]
\[
\text { - } A X+B Y+C=D X+E Y+F
\]
\[
\mathrm{GX}+\mathrm{HY}+\mathrm{I}=\mathrm{JX}+\mathrm{KY}+\mathrm{L}
\]
\[
\text { - } \mathrm{AX}+\mathrm{BY}=\mathrm{C}
\]
\[
D X+E Y+F=0
\]
\[
\cdot A X+B Y+C=0
\]
\[
Y=D X+E
\]
\[
\cdot A X+B Y+C=0
\]
\[
\mathrm{DX}+\mathrm{EY}+\mathrm{F}=\mathrm{GX}+\mathrm{HY}+\mathrm{I}
\]

Pressing F6(EXCH) reverses the left side and right side elements of the expression.

\section*{- Defining the Expression}

In this step, you specify coefficients and define the expression. You can select any of the three following methods for specifying coefficients.
- \{RAND\} ... \{random generation of coefficients\}
- \{INPUT\} ... \{key input of coefficients\}
- \{SMPL\} ... \{selection of coefficients from samples\}
- \{SEED\} ... \{selection of a number from 1 to 99 (specification of the same number displays the same expression)\}

F1 (RAND) or Exe generates random coefficients and defines the expression.
[F2 (INPUT) displays the coefficient input screen. Input coefficients, pressing EXEX after each. After you finish inputting all the coefficients, press F6(EXE) to define the coefficient.

F3 (SMPL) displays a number of preset sample expressions. Highlight the one you want to use and then press Ex日 to define it.

Pressing F4(SEED) displays a number selection screen. When you want to create the same problem on another calculator, specify an appropriate matching number and press EXX.

No matter what method you use, the expression you define is displayed in the output area.

You can copy an expression to the Graph Mode as a graph function*1.
 (Simultaneous Equation Mode*2)
\(\cdot\{\mathbf{1} \cdot \mathbf{C O P}\} /\{\mathbf{2} \cdot \mathbf{C O P}\}\)... copy \(\{\) first \(\} /\{\) second \(\}\) expression as a graph function
\({ }^{* 1}\) In the case of an inequality, the inequality symbols are also copied.

\footnotetext{
\({ }^{\text {*2 }}\) Simultaneous equations are transformed to the format \(\mathrm{Y}=\mathrm{AX}+\mathrm{B}\) when copied.
}

\section*{■ Specifying the Solve Mode}

You can select one of the following three solve modes for the displayed expression.
- \{VRFY\} ... \{Verify Mode\}

In this mode, you input a solution for verification of whether or not it is correct. It provides a good way to check solutions you arrive at manually.
```

- \{MANU\} ... \{Manual Mode\}

```

In this mode, you manually input algebra commands, transform the expression, and calculate a result.

\section*{- \{AUTO\} ... \{Auto Mode\}}

In this mode, the solution is produced automatically, one step at a time.

\section*{Verify Mode}

Press F4 (VRFY) to enter the Verify Mode.
The expression is shown in the top line of the display. Input the solution underneath it, and then press F6(JUDG) to determine whether the solution is correct.
The verification result screen shows the left side and right side verification result (except for a linear equation).
- However, in the case where a linear equation or quadratic equation has two solutions, the left side and right side are obtained for the value where the pointer is located.
- In the case of simultaneous equations where the left side and right side of the second equation are dissimilar even though the left side and right side of the first equation match, the left side and right side of the second equation only are obtained. In other cases, the left side and right side of the first equation are obtained.

The type of solution input screen that appears is selected according to the expression type. To input a different type, press F1(TYPE) and then select the solution type you want to want to use. Available solution types depend on the mode.
\(\bullet\{X=\mathbf{a}\} \ldots X\) has one solution \((X=a)\) (linear equation default)
- \(\{\mathbf{X}=\mathbf{a}, \mathbf{b}\} \ldots \mathrm{X}\) has two solutions \((X=a, X=b)\) (quadratic equation default)
- \(\{\mathbf{X}=\mathbf{a}, \mathbf{Y}=\} \ldots \mathrm{X}\) and Y have one solution each \((\mathrm{X}=\mathrm{a}, \mathrm{Y}=\mathrm{b})\) (simultaneous equation default)
- \(\{\mathbf{X}>\mathbf{a}\} \ldots \mathrm{X}\{><\geqq \leqq\}\) a (linear inequality default)
- \(\{\mathbf{X}<\mathbf{a}, \boldsymbol{b}<\} \ldots X<a, b<X\) or \(X \leqq a, b \leqq X\)
- \(\{\mathbf{a}<\boldsymbol{X}<\boldsymbol{b}\} \ldots \mathrm{a}<\mathrm{X}<\mathrm{b}, \mathrm{a} \leqq \mathrm{X} \leqq \mathrm{b}\) or \(\mathrm{X}=\mathrm{a}\)
- \{Identi\} (Identity) ... identity of left side and right side
- \{Many\} (Many Solutions) ... many solutions
- \(\{\) No sol \(\}\) (No Solution) ... no solution

You can press F4 (MANU) to change to the Manual Mode or F5(AUTO) to change to the Auto Mode.

Example To solve 4X = 8 in the Verify Mode (Linear Equation) \((\mathrm{AX}=\mathrm{B})\)
F2 (INPUT) 4 远 8 ExE E6 (EXE)
F4 (VRFY) 2 \({ }^{\text {EXE }}\)
F6 (JUDG)


\section*{Manual Mode}

Press F5(MANU) to enter the Manual Mode.
As with the Algebra Mode, the screen is divided between an input area and a display area.
This means you can select Algebra Mode commands from the function menu, transform the expression, and solve it.

Operation is the same as that in the Algebra Mode.
After you obtain a result, you can press F5 (JUDG) to determine whether or not it is correct.
- \(\{\) DISP\} ... Determines whether the expression in the display area is a correct solution.
- \{Identi\} ... identity of left side and right side
- \{Many\} ... many solutions
- \{No sol\} ... no solution

You can press F6 (AUTO) to change to the Auto Mode.

\section*{Example Solve 4X = 8 in the Manual Mode}
(Linear Equation)( \(\mathrm{AX}=\mathrm{B}\) )
F2 (INPUT) 4 远 8 ExE (EXE)
F5 (MANU)

F4 (eqn) \(10 \div 4\)
EXE


F1(TRNS) 1 (smplfy)
F4 (eqn) 2
EXE


F5 (JUDG) 1 (DISP)


Example \(\quad 4 X^{2}=16\)
True ( \(\mathrm{X}=2, \mathrm{X}=-2\) )
Besides "TRUE" the messages shown below can also appear as the result of verification. "CAN NOT JUDGE" appears in the Manual Mode, while the other messages appear in both the Verify Mode and Manual Mode.


\section*{- Auto Mode}

Press F6(AUTO) to enter the Auto Mode.
In the Simultaneous Equation Mode, you must also select SBSTIT (Substitution Method) or ADD-SU (Addition/Subtraction Method).
The Substitution Method first transforms the equation to the format \(\mathrm{Y}=\mathrm{aX}+\mathrm{b}\), and substitutes \(a X+b\) for \(Y^{\star 1}\) in the other equation.
The Addition/Subtraction Method multiplies both sides of the expression by the same value to isolate the coefficient X (or Y).
As with the Algebra Mode, the screen is divided between an input area and a display area.
Each press of F6(NEXT) advances to the next step. F6(NEXT) is not shown on the display when the solution is obtained.

You can scroll back through the steps by pressing F1(BACK).

\section*{Example To solve 4X = 8 in the Auto Mode}

\section*{7-4 Algebra System Precautions}
- If an algebraic operation cannot be performed for some reason, the original expression remains on the display.
- It may take considerable time to perform an algebraic operation. Failure of a result to appear immediately does not indicate malfunction of the computer.
- Any expression can be displayed in various different formats. Because of this, you should not assume that an expression is wrong just because it does not appear as you expected.
- This calculator performs integration calculations under the assumption that integrals are always positive, even when the integrals switch between positive and negative.
\([f(x)\)
\(F(x)\) : primitive function of \(f(x)\)
\(\int_{a}^{b} f(x) d x=F(b)-F(a)\)```


[^0]:    ${ }^{* 1}$ Up to 99 formulas can be stored in Eqn memory.
    The error message "Memory ERROR" when you try to store an equation when there are already 99 equations in Eqn memory. When this happens, execute the ALLEQU (Delete All Equations) from the CLR menu.

[^1]:    \# About approx
    With normal calculations (when approx is not used) in the CAS Mode, calculation results are displayed in full, without using exponents. When you use approx in the CAS Mode, however, results are displayed using the

